

A Survey of ESIGN: State of the Art and Proof of Security

Richard A. Kramer
Oregon State University

kramerri@onid.oregonstate.edu

UPDATED: WINTER TERM 2017

Abstract

Keywords

RSA, ESIGN, cryptography, digital signature, encryption, decryption, factoring

RSA [1] generates digital signatures and cipher text, S, by performing

exponentiation on a message, M, to the e-th power of the form Me mod(n),

where n is based on large prime numbers. RSA has been proven to be

fundamentally secure, given the complexity of the e-th root mod(n) problem

that RSA presents. Unfortunately, RSA is computationally intensive, especially

with regards to generating keys/digital signatures and decrypting cipher text

messages. These factors are a major drawback for RSA, especially when RSA

is implemented within embedded solutions that have limited processing

capabilities such as smart cards. To address this problem, ESIGN [2] was

developed as an improvement to RSA, whereas ESIGN offers improved

computational complexity, yet maintains the complexity of the e-th root mod

(n) problem that provides security [9].

This survey provides an in-depth review of: (Section 1) basic ESIGN and how it

works, (Section 2) attempts to improve ESIGN (and its security) via the

introduction of ESIGN variants and other recommendations, (Section 3) the

continually evolving quest to prove and improve ESIGN’s security. This

survey then concludes with Section 4.

2

A Survey of ESIGN: State of the Art and Proof of Security
Richard A. Kramer, Oregon State University

TABLE OF CONTENTS
Section Page

LIST OF FIGURES ... 4

LIST OF TABLES ... 4

Section 1: Introduction .. 5

1.1 The RSA Cryptography Scheme [1]. ... 6

1.2 The Basic ESIGN Cryptography Scheme [2]. ... 7

Section 2: ESIGN Implementations, Improvements and Variants 9

2.1 ESIGN Implementations, Improvements and Variants Overview. .. 9

2.2 TSH-ESIGN [3] ... 9

2.3 ESIGN-D (Deterministic) [6] .. 10

2.4 ESIGN-R (Randomized) [6] .. 11

2.5 Other Variants and Recommendations for ESIGN [7, 8] ... 11

2.6 ESIGN-PSS (Probabilistic Signature Scheme) [13]. .. 12

2.7 ESIGN-PSS-R (Probabilistic Signature Scheme with Recovery) [13]. 13

Section 3: ESIGN’s Proof of Security .. 14

3.1 ESIGN Proof of Security Overview and the AERP (Approximate e-th Root Problem). 14

3.2 Lattice Based Reduction Factorization and LLL (Lenstra, Lenstra, Lovasz) [5, 7, 9, 10, 11, 14]
 15

3.3 Quadratic Sieve Factoring [4, 15] .. 17

3.4 ECF / ECM (Elliptic Curve Factoring / Elliptic Curve Method) [4, 5, 15] 17

3.5 NFS (Number Field Sieve) [4, 5, 15] ... 17

3.6 Summary and Vulnerabilities of ESIGN Security ... 17

Section 4: Test Results and Analysis .. 19

4.1 Setup and Test Overview ... 19

4.2 Results and Summary .. 20

Section 5: Conclusion ... 23

Bibliography .. 24

3

A Survey of ESIGN: State of the Art and Proof of Security
Richard A. Kramer, Oregon State University

Appendix A – Glossary of Terms .. 26

Appendix B – ‘c’ Programming Software Code .. 28

Appendix C – Output Data .. 29

4

A Survey of ESIGN: State of the Art and Proof of Security
Richard A. Kramer, Oregon State University

LIST OF FIGURES

Figure Page

Figure 1: RSA Encryption Scheme .. 6

Figure 2: ESIGN Basic Encryption Scheme .. 7

Figure 3: ESIGN-PSS Keys [13] ... 13

Figure 4: Average Processing Time/Message versus Crypto-Scheme (100,000 Messages
- 64 bit Intel i5) .. 20

Figure 5: Average Processing Time/Message versus Crypto-Process (1 to 100,000
Messages - 64 bit Intel i5) .. 21

Figure 6: Ave. Processing Time/Message versus Processor (100,000 Messages) 22

Figure 7: Average Processing Time/Message versus Crypto-Scheme (100,000 Messages
- Broadcom BCM2837 Cortex A53).. 22

LIST	OF	TABLES	

Table Page

Table 1: Comparison of computational amount [3, Table 2] ... 10

Table 2: Experimental Results of ESIGN given Leakage of l Bits of r [10] 18

5

A Survey of ESIGN: State of the Art and Proof of Security
Richard A. Kramer, Oregon State University

Section	1:		Introduction	

RSA (named after RSA’s inventors, Rivest, Shamir, and Adelman) was introduced in
1977 and was further published in 1978 [1]. RSA generates digital signatures and cipher
text, S, by performing exponentiation on a message, M, to the e-th power of the form Me

mod(n), where n is based on large prime numbers. Through the years, RSA has been
proven to be fundamentally secure, given sufficient complexity for the e-th root mod(n)
problem. Because of the way RSA implemented this scheme, the generation of RSA
keys/digital signatures and RSA decryption are computationally complex.

The foundation of RSA is asymmetrical cryptography were n (part of the Public Key
(PK)) = pq (which forms the Secret Key (SK)), where p and q are (preferably large)
prime numbers. The cryptography scheme for RSA is further explained in Section 1.1.
Unfortunately the generation of RSA keys/digital signatures and decryption of RSA
messages is often-times performed in remote devices such as smart phones or smart
cards, where processing resources are most scarce. This dilemma gave rise to a need for
a less computationally demanding e-th root mod (n) based security solution. ESIGN’s
creation filled this void in 1985. ESIGN builds on RSA and added some additional
schemes to significantly reduce the computational complexity of generating ESIGN
keys/digital signatures and the verification of signatures, employing n = prq among other
changes1, whereas r is typically, r=2 [2]. The cryptography scheme of ESIGN and an
explanation on why ESIGN is less computationally intensive is explained in Sections 1.1
and 1.2.

Based on the creation of ESIGN and security threats, a number of improvements have
been made to ESIGN since ESIGN’s inception. These improvements are discussed in
Section 2 [3, 6, 7, 8, 13].

To prove ESIGN’s security, methods to challenge ESIGN’s security have continued to
evolve [2, 3, 4, 5, 7, 9, 10, 11]. With the evolving attempts to prove ESIGN’s security,
numerous recommendations have been made to increase ESIGN’s security by making
the e-th root mod(n) problem increasingly complex to offset the ever increasing
computing power and attacks of potential adversaries. The methods used to continually
prove ESIGN’s security are presented in Section 3.

Finally, Section 4 provides the conclusion including potential future applications [12].
For the aid of the reader, a glossary of terms is provided as an Appendix.

1 For example, beyond the changes in how computations are performed, ESIGN shifts some of the
computational processing such that it can be done independent of the actual messages being digitally
signed.

6

A Survey of ESIGN: State of the Art and Proof of Security
Richard A. Kramer, Oregon State University

1.1	 The	RSA	Cryptography	Scheme	[1].	

RSA encryption and decryption follows the form of:

Choose and calculate:

1. Choose p and q = prime numbers

2. From that, calculate n = pq and ϕ(n) = (p-1)(q-1)

3. From that, choose e (relatively prime) to ϕ(n)

Public Key (PK = n, e):

n, from above

e, from above

Secret Key (SK = p, q, d):

p and q from above

d = e-1(mod(ϕ(n)). In other words, e d ≡ 1 mod(ϕ(n))
Figure 1: RSA Encryption Scheme

From the above, to encrypted cipher text C, using message M, the following operation is
performed:

C = Me mod(n)

To decrypt the cipher text C to recover message M, the following operation is
performed:

M = Cd mod(n)

Alternatively, the secret key SK element d can be used to encrypt M, and in return,
public key PK element e can be used to recover M from the cipher text C.

The computational complexity of RSA is in part, a result of the requirement to
calculate the Secret Key (SK) element d, which requires the inverse exponentiation
of e of the form d = e-1(mod(ϕ(n)), which relates to both the calculation of the
Secret Key (SK) element d and decryption of the cipher text message via M = Cd
mod(n).

7

A Survey of ESIGN: State of the Art and Proof of Security
Richard A. Kramer, Oregon State University

1.2	 The	Basic	ESIGN	Cryptography	Scheme	[2].	

ESIGN builds upon RSA by introducing the relationship n = p2q and other schemes as
follows:

Choose and calculate2:

1. Choose p and q = large prime numbers where p > q

2. From that, calculate n = p2q which results in a 3k bits long
value (note: in [2], “n” is denoted a “N”)

3. Choose e, a positive integer ≥ 4 (note: in [2] “e” is denoted as
“K”)

4. Choose k: The use of k, was later formalized to be the bit
length of p and/or q [3, 9, 10 as examples]

Public Key (PK = n, e, k):

n, from above

e, from above

k, was later added, as discussed above

While not a specific part of the Public Key (PK) the hash function
H must be agreed upon in advance.

Secret Key (SK = p, q):

p and q, chosen above
Figure 2: ESIGN Basic Encryption Scheme

ESIGN SIGNATURE:

From the above, digital signature generation is performed as follows:

1. Choose r: Pick a random number r  Z*
n , where Z*

n denotes a set of integer
numbers between 0 and n-1 which is relatively prime to n (note: in [3], “r” is
referred to as “X”)

2. Calculate variables that will be used to later create S (the digital signature) as
follows:

a. Z = H’(M)) – remod(n) where H is a one-way hash function H(M) 
Z*

pq for any positive integer M and H’(M) is a Trisection Hash of
H(M) (see Section 2.2 – below)

b. 0 =  [(H’(M)) – remod(n)] / pq, (also called “W” in [2] which is
rounded to the upper integer ( ))

2 Based on [3]. As will be discussed further below, after the initial introduction of ESIGN, further
restrictions on the value of k (bit length for p and q, the minimum value of e where later added.

8

A Survey of ESIGN: State of the Art and Proof of Security
Richard A. Kramer, Oregon State University

c. It was later formalized [3, 9, 10] that:

i. 1 = 0pq – Z

ii. If 1 > 22k-1, then repeat the above steps starting with
picking a new value r.

d. Y = [0/[(ere-1)] mod(p)

3. S = r + Ypq (the digital signature)

An important attribute of ESIGN, over RSA, is the fact that many of the computationally
intensive steps for signature can be calculated, independent of the message M, such as
the following operations from above, shown in BOLD/underline:

0 = ((H(M)) – remod(n))/pq, also call “W” in [1]

Y = [W/(ere-1)]mod(p)

ESIGN SIGNATURE VERIFICATION:

For digital signature verification, uniquely, ESIGN provides verification based on a
range (versus an exact value as in RSA), by solving the following inequality:

1. 0 ≤ S < n

2. 0 ≤ Se mod(n) / 22k< s(k-1)

3. H’(M) computed = H’(M) received.

Further, for embedded applications, such as smart cards where p and q were fixed for the
life of the card, pre calculations could be performed that use p and q (e.g., n), and the
answers stored in a look-up table in EEPROM at the time of production, versus
calculating these values via a microprocessor on the fly [2].

The above combination of attributes related to ESIGN makes ESIGN computationally
advantageous over RSA. At the time, it was estimated that ESIGN was more than
“twenty times faster than that of RSA” including the “signature generation of about 0.2
seconds” [2, at Abstract].

As shown above, when contrasting RSA to ESIGN, in addition to avoiding inverse
exponentiation, ESIGN also advantageously allows for the pre-processing of
certain variables that are independent to the message, M, and ESIGN verifies the
digital signature based on a range of values rather than a specific value.

9

A Survey of ESIGN: State of the Art and Proof of Security
Richard A. Kramer, Oregon State University

Section	2:		ESIGN	Implementations,	Improvements	and	Variants	

2.1	 ESIGN	Implementations,	Improvements	and	Variants	
Overview.	

As discussed above in Section 1.2, ESIGN was created in 1985 [2]. Shortly after
ESIGN’s introduction, ESIGN was found to be vulnerable to attack for e ≤ 4 [2 at pg.
449, Section 2.3]. Since that time, other improvements have been recommended for
ESIGN. These improvements include the creation of the following variants/extensions
of ESIGN:

1. TSH-ESIGN – which was adopted as part of the ISO/IEC 14888-3 [3] standard
2. ESIGN-D - ESIGN-Deterministic [6]
3. ESIGN-R- ESIGN-Randomized [6]
4. Other Variants and Recommendations for ESIGN [7, 8]
5. ESIGN-PSS - ESIGN-Probabilistic Signature Scheme [13]
6. ESIGN-PSS-R- ESIGN-Probabilistic Signature Scheme with Recovery [13]

Each of these ESIGN variants/extensions are further discussed below in the following
subsections.

2.2	 TSH‐ESIGN	[3]	

TSH-ESIGN (Trisection Size Hash) [3] was adopted as an appendix of ISO/IEC 14888-
3. Overall, in TSH-ESIGN p and q at set to value k bits in length, thus the length of n =
p2q is 3k bit long. It is from this relationship of “3k” that the trisection hash is
formulated (e.g., 3 sections). For TSH-ESIGN, the hash function H is such that the
H’(M) must be of the proper length, thus resulting in: H’(M) = (0||H(M)), where the hash
input for Z discussed above is (H’(M)||02k), thus Z = (0||H(M)||02k).

The security of TSH-ESIGN is proven given a sufficiently hard n factoring problem.
Thus, TSH-ESIGN is EUA-CMA (Existentially Unforgeable Against a [adaptive]
Chosen Message Attack) under the AERP (Approximate e-th Root Problem)
assumption.

 The Approximate e-th Root Problem (AERP) assumption is: there is no efficient
algorithm for solving the AERP, whereas the AERP problem entails finding the e-
th root of a modulo n equation.

10

A Survey of ESIGN: State of the Art and Proof of Security
Richard A. Kramer, Oregon State University

Further, TSH-ESIGN retains the computational advantage over RSA. For the
comparison below, RSA and ESIGN are contrasted where e = 216 +1 for RSA, and e = 25
for TSH-ESIGN. The significant reduction of computations for TSH-ESIGN is shown
below:

Table 1: Comparison of computational amount [3, Table 2]

2.3	 ESIGN‐D	(Deterministic)	[6]	

While ESIGN is proven to be e-th root mod(n) secure (e.g., under the AERP
assumption), a number of security proofs for ESIGN have been flawed (e.g., see [4] pg.
3, Section 1.4). To extend the provability of ESIGN, a deterministic variant of ESIGN
was created called ESIGN-D (Deterministic) [6].

To create the ESIGN-D variant, the following steps (or modified steps) are performed
relative to the original ESIGN implementation shown in Section 1.2 above:

Integral to the ESIGN-D variant is:

1. Instead of choosing the random number r, a one-way function ϕ is created.
The function ϕ outputs a randomly distributed number that is mod(n).

2. A new k bit value  is created and is included as part of the Secret Key (SK).

3. Instead of using the iterative calculation of 1 (where from above, 1 = 0pq

– Z, where 0 is dependent on r; 0= ((H(M)) – remod(n))/pq and if 1 >
22k-1 then a new r is chosen), instead of r, the following new variable is
introduced, which I will call r’.

r’ = ϕ(H(M)||||i) for i = 0,1, 2, …

Simulation results show that Semod(n)mod(22k-1) is indistinguishable from the
value generated from the signature algorithm, where  is sufficiently large such
that ϕ is unpredictable.

11

A Survey of ESIGN: State of the Art and Proof of Security
Richard A. Kramer, Oregon State University

Overall, ESIGN-D adds additional processing costs, yet at bit lengths of 1152 or
1536 there are no additional security gains as opposed to unmodified ESIGN (see
[6] at pg. 6, Section 2.4).

2.4	 ESIGN‐R	(Randomized)	[6]	

ESIGN-R (ESIGN-Randomized) was created to allow for the simulation of the
probabilistic output of the ESIGN signature generator (oracle). Accordingly, the new
signature algorithms for ESIGN-R are as follows:

1. Generate additional random number , where the length of  is ≤ 2log2(qS)

2. H’(M) = H(M||) where the hash output H’ is the result of the combination of
the hash H of the message M and 

3. 0 = ((H’(M))22k – remod(n))/pq, where as compared to standard ESIGN as
described in Section1.2, the hash value H(M) is replaced with H’(M) and
multiplied by 22k

4. The enhanced digital signature is calculated as = M||||S

The digital signature verification is valid if:

H’(M) = Se/22k, where H’(M) = H(M||)

Overall, ESIGN-R adds both additional processing costs and bit length due to the
addition of the variable , yet at bit lengths of 1152 or 1536 there is no additional
security gains as opposed to unmodified ESIGN (see [6] at pg. 6, Section 2.4).

2.5	 Other	Variants	and	Recommendations	for	ESIGN	[7,	8]	

A number of other variants have been provided to improved ESIGN, including variants
to RSA that can be extended to ESIGN. A number of these variants include:

1. Recommendations for the size of e and k [3,4]

As discussed above [3], a minimum size of e ≥ 4 was recommended based on
the fact that e = 2, 3 was found to be venerable [3]. Upon evaluation of the e-
th root problem , it was recommended that k ≥ 320 bits (see [4] at pgs. 4-5) and
Section 3 below).

12

A Survey of ESIGN: State of the Art and Proof of Security
Richard A. Kramer, Oregon State University

2. Batch RSA Extended to ESIGN [8]

The concept of batch processing of, for example multiple decryptions (or
digital signatures, or signature verifications) was applied to RSA, specifically
because RSA requires modulo exponential inversion to recover the original
message (e.g., M = Cd mod(n) where ed ≡ 1mod(n)) [8]. The requirement for
modulo exponential inversion is mitigated in ESIGN, which reduces
computational requirements. Nonetheless, based on implementation,
opportunities exist to batch process certain portions of the ESIGN algorithms
for multiple messages, such as the batch selection of large prime numbers p
and q and random number selection r sets, to be cued for future multiple
message processing.

3. Multi Key Settings [4]

As an extension of ESIGN to prevent an attacker from forging keys at each
level within a multi key setting, the hash value H(M) can be modified to be
H’(M) such that the message M is hashed with a public key at each level of
security within a multi key environment [4], thus:

H’(M) = H(M||PKx) where x is the Public Key at a specific level, x

4. Proposed Security Levels for ESIGN [7]

To continue to increase the difficulty of the AERP, two levels of security have
been recommended for the length of k, including [7] at pg. 7, Section 6 as
follows:

kLevel_1 = 384 bits

kLevel_2 = 768 bits

Where e = 1024

2.6	 ESIGN‐PSS	(Probabilistic	Signature	Scheme)	[13].	

As ESIGN continues to evolve and benefit from the advancements of RSA, ESIGN-PSS
(ESIGN-Probabilistic Signature Scheme) was added to the ISO/IEC14888-2:2008
standard.

With regards to key generation, the primary difference between the baseline ESIGN
scheme described above in Section 1.2, and ESIGN-PSS scheme is the addition of the
variable v which is chosen as follows:

13

A Survey of ESIGN: State of the Art and Proof of Security
Richard A. Kramer, Oregon State University

8 ≤ v , 23k-1

GCD(v, n) =1

GCD(v, ϕ(pq) ≤ 3k

From this, the following is the Public Key (PK) and the Secret Key (SK) for ESIGN-
PSS:

Public Key (PK = n, k, v):

Where n, k are comparable to the values in the previously
discussed for ESIGN (see Section 1.2).

Secret Key (SK = p, q, k, v):

Where p, q, and k are comparable to the values in the previously
discussed for ESIGN (see Section 1.2). n = pq, where in [13] these
variables are called p1 and p2 respectively and n is said to be part
of the Secret Key (SK).

Figure 3: ESIGN-PSS Keys [13]

The biggest changes from ESIGN to ESIGN-PSS relates to the digital signature
generation (and verification). Specifically, ESIGN-PSS adds a random salt E, where E
is then combined with the hash of the message M to form the digital signature. In fact,
for ESIGN-PSS, the hashed message M is hashed (again) using hash function h:

HH = h(064||H(M)||E)

and then hashed again using hash function g :

R = g(HH)(0kg-kE-1||1||E).

For the digital signature verification, this process is reversed using the Public Key (PK).
For a full description of the algorithms used, see reference [13] at pg. 1396, Sections
“Signing Algorithm, Sig” and “Verification Algorithm, Ver”.

2.7	 ESIGN‐PSS‐R	(Probabilistic	Signature	Scheme	with	Recovery)	
[13].	

ESIGN-PSS-R (ESIGN-Probabilistic Signature Scheme with Recovery) builds on the
abovementioned ESIGN-PSS [13] and further provides a signature scheme with message

14

A Survey of ESIGN: State of the Art and Proof of Security
Richard A. Kramer, Oregon State University

recovery. The Public Key (PK) and Secret Key (SK) are identical to those used in the
ENSIGN-PSS scheme.

Additionally, ESIGN-PSS-R provides a recoverable message length, defined as follows:

LenM1, where LenM1 < kg - kE - 1

Further, the ESIGN-PSS digital signature generation algorithm is modified going from
ESIGN-PSS to ESIGN-PSS-R to include the additional parameter message recovery
parameter LenM1 within the respective hash functions used in the ESIGN-PSS scheme:

HH = h(LenM1||M1||H(M1)||E)

R = g(HH)(0kg-kE-1||1||E)

For the digital signature verification, this process is reversed using the Public Key (PK).
For a full description of the algorithms used, see reference [13] at pg. 1403, Section
“Signing Algorithm, Sig” and at pg. 1404, Section “Verification Algorithm, Ver”.

Section	3:		ESIGN’s	Proof	of	Security	

Overall, the objective to a digital signature scheme is to be Existentially Unforgeable
Against a Chosen Message Attack (EUA-CMA). The goal of an adversary, A, is to
obtain a valid signature on a single message M, after having obtained a collection of
prior messages before M, of A’s choice [4]. As discussed in Section 3.1 immediately
below, the core of ESIGN’s approach to EUA-CMA is that the AERP is sufficiently
intractable [4].

3.1	 ESIGN	Proof	of	Security	Overview	and	the	AERP	
(Approximate	e‐th	Root	Problem).	

The core of ESIGN’s security is related to the ability to not solve the Approximate e-th
Root Problem (AERP) and the AERP assumption as discussed above.

Numerous schemes have been developed to attempt to efficiently solve the AERP
problem. Further, these schemes have been developed under varying assumptions
related to the core complexity of the AERP including but not limited to: (1) the
complexity of the e-th root problem based on the value of e; (2) the size of p, q, n; (3)
potential leakages of information; (4) non-randomness / bias, and various other attack
scenarios. This section discusses the various methods and schemes used to challenge
and prove ESIGN’s security.

15

A Survey of ESIGN: State of the Art and Proof of Security
Richard A. Kramer, Oregon State University

In general, a multitude of schemes and assumptions related to factoring (and the AERP
assumption) have been used to challenge the security of ESIGN. These scheme and
methods include:

1. Lattice Based Reduction Factorization and LLL (Lenstra, Lenstra,
Lovasz) [5, 7, 9, 10, 11, 14]

2. Quadratic Sieve Factoring [4]

3. ECF / ECM (Elliptic Curve Factoring / Elliptic Curve Method) [4,5]

4. NFS (Number Field Sieve) [4,5]

Each of these methods and their effectiveness is further discussed below:

3.2	 Lattice	Based	Reduction	Factorization	and	LLL	(Lenstra,	
Lenstra,	Lovasz)	[5,	7,	9,	10,	11,	14]	

Simply stated, lattice based factorization is a method of building a matrix made up of
portions of the polynomial to be factored, and then using the output of a factorization
table to complete the matrix and thus find the factors. As the complexity of the
polynomial equation increases (e.g., the value of e), the complexity of the lattice
increases to the point of unmanageability. The LLL (Lenstra, Lenstra, Lovász)
algorithm significantly improved lattice based factorization by reducing the lattice using
short vectors in polynomial time (see [10]; also see discussion for [14] below).

Related to ESIGN, lattice based factorization was proven effective against factoring
early ESIGN implementations where the exponent of the random value r was small (e.g.,
e = 2 or 3) [2]. For lattice based reduction factorization, with small values of e, lattice
based structures are manageable and the method is efficient [7], yet at large values of e
(e.g., e ≥ 4 or ≥ 8), factorization using lattices becomes complex and even impossible
[11]. One way to reduce the complexity (thus posing a threat to security) is to have
leakage and/or non-randomness bias. Because of the exposed vulnerability of ESIGN
using lattice based factorization at e = 2 or 3, e was increased to e ≥ 4, and even later e ≥
8 [2, 3, 4, 5, 7, 9, 10, 11].

Further and importantly, using the LLL algorithm: even a small amount of leakage or
non-random bias has been proven to be detrimental to determining the ESIGN Secret
Key (SK). For instance, the requirement for r < pq has resulted in some ESIGN
implementations simply masking the upper bits of r in a manner to force r < pq. Such
masking introduces bias (e.g., non-randomness) that lattice based factoring is then able
to exploit [7]. The use of LLL to exploit other vulnerabilities within ESIGN are further

16

A Survey of ESIGN: State of the Art and Proof of Security
Richard A. Kramer, Oregon State University

discussed in Section 3.6 below, entitled “Summary and Vulnerabilities of ESIGN
Security”.

For LLL for ESIGN, the run time maximum is said to be:

Run time (max)3 = O(t4(log(i ≤ t)

Where t is the number of linear independent vectors generated in the LLL scheme (see
[10] at pgs. 497-498).

3 Here I have changed “d” used in [10] to “t” to mitigate any confusion with the Secret Key (SK) element
d used in RSA.

A discussion of LLL and polynomial time

In the paper “Small secret exponent attach on RSA variant with modulus N = p[j]q”
[14] (see note 1 below), the paper provides an analysis of factoring for the RSA
Secret Key (SK) element d for the exponent value j = 2. As discussed above, the
digital signature for RSA is of the form: C = Me mod(n), and the decryption of the
cipher text, C, is the inverse exponentiation of e for verifying the digital signature
using the Secret Key (SK) element, d (e.g., M = Cd mod(n)).

In contrast, for ESIGN n = p2q, and the signature is of the different general form: S
= r + Ypq and the verification of the digital signature entails solving the range
H(M) ≤ Se mod(n) < H(M) +22|n|2/3 using e. From this, it can be seen that part of the
ESIGN polynomial to be factored to verify the digital signature entails r raised to
the e-th power (via Se). Thus the factoring RSA’s Cd mod(n) is not equivalent to
factoring ESIGN’s Semod(n) where ESIGN’s digital signature includes the use of
the random number r raise to an exponent e (not its inverse, where there is no
equivalent d as is the case in RSA).

Thus the analysis and proof of the paper [14] that proves factoring for RSA in
polynomial time for the decryption exponent, d ≤ N0.395 cannot be directly applied
to ESIGN. With that said, what is true is: Both RSA and ESIGN are proven to be
factorable in polynomial time using LLL (see [14] for RSA, and “The Insecurity of
ESIGN in Practical Implementations” [10] for ESIGN).

Thus it is true that factorization in polynomial time applies to both RSA and
ESIGN [10, 14].

Note 1: To avoid confusion with the use of random number “r” used in ESIGN, I have changed the
exponent reference to “j”.

17

A Survey of ESIGN: State of the Art and Proof of Security
Richard A. Kramer, Oregon State University

3.3	 Quadratic	Sieve	Factoring	[4,	15]	

In certain cases, the quadratic sieve factoring method has been proven to be more
efficient than the lattice base reduction method, for example, when e ≥ 4 given the
special case of n being the product of two primes of equal size [4]. Nonetheless, other
methods have proved more efficient/effective including the Number Field Sieve (NFS)
method, thus quadratic sieve factoring has been surpassed by NFS [4, 15].

3.4	 ECF	/	ECM	(Elliptic	Curve	Factoring	/	Elliptic	Curve	Method)	
[4,	5,	15]	

The elliptical curve factoring method (ECM) is the fastest factoring algorithm known
when the algorithm run time is measured in terms of small prime numbers. This is
specifically useful based on the smallest prime of n (e.g, q, where in ESIGN by
definition p > q as discussed in Section 1.2) assuming that the smallest prime is a small
number overall.

By definition, ESIGN requires large prime numbers [2] and in fact later ESIGN
implementations stipulated the minimum size of the prime numbers to be of large bit
length k, thus making ECF ineffective and inefficient when dealing with large prime
numbers for both p and q (see [4] at pg. 6, “Summary” and [15] at pg. 211). With the
smallest prime number of n being large [4] such that the a minimum bit length of k =
320 bits for p and q (or |n| is at least 1024 bits long, the ECF method is ineffective based
on long run times ([4] pg. 5, [5] pg. 3).

3.5	 NFS	(Number	Field	Sieve)	[4,	5,	15]	

NFS(Number Field Sieve) has been validated to be superior based on the work of
numerous researchers and experimentation. In fact, it is asymptotically superior to the
above mentioned quadratic sieve factoring method. Overall, NFS’s expected run time is
given as:

Run time = O(exp((1.306 + o(1)) ln(n)1/3(ln(ln(n)))2/3)) [4]

As can be seen from the above, the run time is dependent of n.

3.6	 Summary	and	Vulnerabilities	of	ESIGN	Security	

In summary, using a wide variety of methods and schemes, ESIGN and the later
enhanced variants of ESIGN have been proven to provide EUA-CMA based on a
sufficiently intractable AERP presented to any would be adversary A provided leakage
and non-randomness / bias is avoided. In sharp contrast, it has been proven that when

18

A Survey of ESIGN: State of the Art and Proof of Security
Richard A. Kramer, Oregon State University

the true randomness / bias of the ESIGN process is compromised, ESIGN becomes
insecure [7, 10].

Experimental results of ESIGN vulnerabilities should l bits of leakage occur is as
follows:

Table 2: Experimental Results of ESIGN given Leakage of l Bits of r [10]

Where:

l = bits of leakage from random number r.
d = the number of signatures that would need to be received by an adversary A prior
to being able to factor p and q.

The impact of ESIGN security based on leakage

Using the LLL algorithm with a 1152 bit modulus (n) and thus the random variable
r bit length is 768 bits:

IF ONLY 8 BITS of the 768 bits for r are exposed, based on simply
obtaining 57 signatures: the Secret Key (SK) can be recovered in a matter of
minutes (using 2003 computing speed estimates). This can be done by
solving re mod(n) which allows the recovery of p and q [10].

19

A Survey of ESIGN: State of the Art and Proof of Security
Richard A. Kramer, Oregon State University

Section	4:		Test	Results	and	Analysis	

4.1	 Setup	and	Test	Overview	

ESIGN as compare to ECDSA (Elliptical Curve Digital Signature Algorithm) and
ED25519 (Edwards Curve 25519) were fully implemented and evaluated to compare
processing speed for:

 Sign

 Verify

 Sign + Verify

Testing was conducted for N=1, 100, 10,000 and 100,000 messages of 16 bytes in
length. Implementation was done in ‘c’ programming, using gcc.

A summary of the setup conditions for each of signature schemes is as follows:

ESIGN was implemented in ‘c’ using the M.I.R.A.C.L. libraries according to ESIGN-
PSS [13]. The key bit length for n = 3,084 bits, based on each of p and q = 1,024 bits,
thus yielding a 3,084 bit signature. The native H(M) hash length was 256 bits and then
made into a trisection hash.

ECDSA was likewise implemented in ‘c’ code using the M.I.R.A.C.L. libraries and
using a modified version of M.I.R.A.C.L. reference software for implementing ECDSA.
The key and signature size bit lengths was all 192 bits each.

ED25519 was implemented using modified ‘c’ code using an MIT implementation for
x64 bit processors. The key length was 256 bits and the signature length was 2,048 bits.
Testing for ED25519 was only done on the below mentioned 64 bit Intel i5 processor.

The testing was conducted on the following platforms:

1) A 64 bit Intel i5-3317U running at 1.70 GHz
2) A Raspberry Pi-3 with a Broadcom BCM2837 Cortex A53 Processor

20

A Survey of ESIGN: State of the Art and Proof of Security
Richard A. Kramer, Oregon State University

4.2 Results	and	Summary	

The data taken from the above test setup and platforms indicates superior performance
of the ESIGN verification over ECDSA and EC25519 making.

Shown below is the following:

1) Figure 4: Average Processing Time/Message versus Crypto-Scheme (100,000
Messages - 64 bit Intel i5)

2) Figure 5: Average Processing Time/Message versus Crypto-Process (1 to
100,000 Messages - 64 bit Intel i5)

3) Figure 6: Ave. Processing Time/Message versus Processor (100,000 Messages)
4) Figure 7: Average Processing Time/Message versus Crypto-Scheme (100,000

Messages - Broadcom BCM2837 Cortex A53)

From the results, ESIGN outperformed ECDSA overall. For example, on the Raspberry
Pi Cortex A53 processor, ESIGN verify versus ECDSA verify outperformed ECDSA by
901% while at the expense of only -12% for ESIGN sign versus ECDSA verify (see Fig.
7 – below).

Turning to ESIGN as compared to ED25519, on the Intel i5 64 bit processor, ESIGN
verify outperformed ED25519 verify by 930% while at the expense of -77% comparing
ESIGN sign to ED25519 sign.

Figure 4: Average Processing Time/Message versus Crypto-Scheme
(100,000 Messages - 64 bit Intel i5)

ED25519

ESIGN

ECDSA

0.000

0.500

1.000

1.500

2.000

Sign
Verify

Sign + Verify

C
ry
p
to
 S
ch
e
m
e

A
ve
ra
ge

 P
ro
ce
ss
in
g
Ti
m
e
 (
m
s)
/M

e
ss
ag
e

Crypto Process

ED25519

ESIGN

ECDSA

21

A Survey of ESIGN: State of the Art and Proof of Security
Richard A. Kramer, Oregon State University

Figure 5: Average Processing Time/Message versus Crypto-Process
(1 to 100,000 Messages - 64 bit Intel i5)

ESIGN Verify

ESIGN Sign
ESIGN Sign + Verify

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1
100

10,000
100,000 C

ry
p
to
 P
ro
ce
ss

A
ve
ra
ge

 P
ro
ce
ss
in
g
Ti
m
e
 (
m
s)
/M

e
ss
ag
e

Number of Messages

ESIGN Verify

ESIGN Sign

ESIGN Sign + Verify

22

A Survey of ESIGN: State of the Art and Proof of Security
Richard A. Kramer, Oregon State University

Figure 6: Ave. Processing Time/Message versus Processor (100,000 Messages)

Figure 7: Average Processing Time/Message versus Crypto-Scheme
(100,000 Messages - Broadcom BCM2837 Cortex A53)

Intel i5

BCM2837 Cortex A53
0.00

1.00

2.00

3.00

4.00

5.00

Verify Sign
Sign +
Verify

P
ro
ce
ss
o
r

A
ve
ra
ge

 P
ro
ce
ss
in
g
Ti
m
e
 (
m
s)
/M

e
ss
ag
e

Crypto Process

Intel i5

BCM2837 Cortex A53

ESIGN

ECDSA
0.000

2.000

4.000

6.000

8.000

10.000

Sign
Verify

Sign + Verify C
ry
tp
o
 S
ch
e
m
e

A
ve
ra
ge

 P
ro
ce
ss
in
g
Ti
m
e
 (
m
s)
/M

e
ss
ag
e

Crypto Process

ESIGN

ECDSA

23

A Survey of ESIGN: State of the Art and Proof of Security
Richard A. Kramer, Oregon State University

Section	5:		Conclusion		

While it is said that the mathematics of the AERP are not fully understood for large
prime numbers (at least when e is not prime to ϕ(n)), numerous proofs have been
presented proving the security of ESIGN using a plethora of methods (including those
listed above). Consistently ESIGN has been proven secure based on AERP absent of
leakage or non-randomness / bias. In fact, ESIGN has been proven to provide near
uniform distribution over a large interval [9]. For example, Lemma 6 of reference [9]
(see, pgs. 295-300) proves that:

As shown above in Section 3.6, the security of ESIGN is highly compromised in the
presence of leakage and/or non-randomness / bias.

Given the favorable computational advantages of ESIGN, future applications of ESIGN
are envisioned.

In all, ESIGN when void of leakage and/or non-randomness/ bias, ESIGN provides
EUA-CMA based on a sufficiently intractable AERP, thus ESIGN is an efficient and
secure method for digital signatures and other future applications.

For a fixed message M, the e-th power Se mod(n) of the output S is uniformly
distributed over the set of e-th powers of elements Zn

*, lying in interval: y, y +
22k-1, (where y = the 0||H(M)||02k; see discussion for ESIGN-TSH above).

A discussion of future applications for ESIGN

The paper “Analysis of the SPV Secure Routing Protocol: Weaknesses and
Lessons” [12] provides one example of the value and future application of
ESIGN. For example, for the intercommunication of gateways that form the
Internet, the Border Gateway Protocol (BGP) is employed. BGP is the protocol
that binds tens-of-thousands of disparate Autonomous Systems (ASes) together.
Within these ASes, the Secure Path Vector (SPV) protocol is employed to
simultaneously provide strong routing authenticity, yet SPV must be high
performance to manage the high volume of traffic [12].

Unfortunately, SPV has a weak m-times signature scheme, whereas SPV is only
secure if the adversary A has less than m signatures. Various short hop/long hop
schemes could be used by an adversary, A, to obtain m signatures, and to then
forge signatures for routed information; where the adversary, A, could then
present the forged signatures as if the information is authentic. Such an attack
presents significant security risks. While numerous improvements to SVP have
been contemplated, one obvious choice is to use the ESIGN scheme to provide a
fast and secure version of the SPV security protocol within the BGP (see [12] at
pg. 37]. ESIGN could be likewise used to implement other security related
protocols.

24

A Survey of ESIGN: State of the Art and Proof of Security
Richard A. Kramer, Oregon State University

Bibliography	

[1] R. Rivest, A. Shamir, and L. Adleman, “A Method for Obtaining Digital
Signatures and Public Key Cryptosystems.” Commun. ACM, 21(2) pgs.
120–126, 1978.

[2] Atsushi Fujioka, Tatsuaki Okamoto, Shoji Miyaguchi, “ESIGN: An

Efficient Digital Signature Implementation for Smart Cards”, Advances in
Cryptology - EUROCRYPT ’91, Volume 547 of the series Lecture Notes in
Computer Science pp 446-457, 1991

[3] Tatsuaki Okamoto Eiichiro Fujisaki Hikaru Morita, “TSH-ESIGN: Efficient

Digital Signature Scheme Using Trisection Size Hash (Submission to
P1363a)”, NTT Laboratories, 1998.

[4] Alfred Menezes, Minghua Qu, Doug Stinson, Yongge Wang, “Evaluation of

Security Level of Cryptography: ESIGN Signature Scheme”, Certicom
Research, 2001

[5] Author Unknown, “Self Evaluation of ESIGN Signature”, at link:

security.nknu.edu.tw/crypto/Self_ESIGN.pdf, date unknown.

[6] Louis Granboulan, “How to repair ESIGN”, Proceeding SCN'02,

Proceedings of the 3rd international conference on Security in
communication networks, pgs. 234-240, 2002, © 2003.

[7] Nick Howgrave-Graham, “A Review of the ESIGN digital standard”, NTRU

Cryptosystems at link:
https://www.ipa.go.jp/security/enc/CRYPTREC/fy15/doc/1007_esign.pdf,
date unknown.

[8] Dan Boneh and Hovav Shacham, “Fast Variants of RSA”, CryptoBytes,

Vol. 5, No. 1, pgs. 1-9, 2002.

[9] Tatsuaki Okamoto and Jacques Stern, “Almost Uniform Density of Power

Residues and the Provable Security of ESIGN”, C.S. Laih (Ed.):
ASIACRYPT 2003, LNCS 2894, pp. 287–301, 2003.

[10] Pierre-Alain Fouque, Nick Howgrave-Graham, Gwenaelle Martinet, and

Guillaume Poupard, “The Insecurity of Esign in Practical Implementations”,
C.S. Laih (Ed.): ASIACRYPT 2003, LNCS 2894, pp. 492–506, 2003.

[11] Noboru Kunihiro and Kaoru Kurosawa, “Deterministic Polynomial Time

Equivalence between Factoring and Key-Recovery Attack on Takagi’s
RSA”, 10th International Conference on Practice and Theory in Public-Key
Cryptography Beijing, China, pp 412-425, 2007.

25

A Survey of ESIGN: State of the Art and Proof of Security
Richard A. Kramer, Oregon State University

[12] Anton Mityagin, Saurabh Panjwani, and Barath Raghavan, “Public Review

for Analysis of the SPV Secure Routing Protocol”, Subtitle “Analysis of the
SPV Secure Routing Protocol: Weaknesses and Lessons” ACM SIGCOMM
Computer Communication Review 29 Volume 37, Number 2, pgs. 29-38,
2007

[13] Tetsutaro Kobayashi, Eiichiro Fujisaki, “Security of ESIGN-PSS”, IEICE

Transactions on Fundamentals, Vol. E90, No. 7, pgs. 1395-1405, 2007.

[14] Santanu Sarkar, “Small secret exponent attack on RSA variant with modulus

N = prq”, Des. Codes Cryptogr. 73:383–392, 2014.

[15] Bruce Schneier, “Applied Cryptography”, John Wiley and Sons Publishing,

1994.

26

A Survey of ESIGN: State of the Art and Proof of Security
Richard A. Kramer, Oregon State University

Appendix	A	–	Glossary	of	Terms	

AERP Approximate e-th Root Problem

AER Approximate e-th Root

AS Autonomous System

BGP Border Gateway Protocol

CMA Chosen Message Attack, (also known as EUA-CMA)

ECDSA Elliptic Curve Digital Signature Algorithm

ED25519 Edwards Curve 25519

ECF Elliptic Curve Factoring

ECM Elliptic Curve factoring Method

ESIGN An efficient digital signature algorithm [2].

ESIGN-D ESIGN-Deterministic

ESIGN-R ESIGN-Randomized

ESIGN-PSS ESIGN-Probabilistic Signature Scheme

ESIGN-PSS-R ESIGN-Probabilistic Signature Scheme with Recovery

EUA-CMA Existentially Unforgeable Against a Chosen Message Attack (also

known as CMA)

GCD Greatest Common Divisor

LLL A lattice algorithm developed by A. K. Lenstra, H.W. Lenstra, Jr.

and L. Lovasz, usually called, thus called the LLL algorithm.

NFS Number Field Sieve

RSA Rivest, Shamir, and Adelman

SVP Shortest Vector Problem (relates to factoring)

SVP Secure Path Vector (relates to BGP)

27

A Survey of ESIGN: State of the Art and Proof of Security
Richard A. Kramer, Oregon State University

TSH Tri-Section Hash

TSH-ESIGN Tri-Section Hash-ESIGN

