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Abstract—In computer systems, the cache memory 

architecture has a significant impact on both, system 

performance and system cost. Further, the gap between 

processor performance and cache memory performance 

is widening at the disadvantage of the overall system 

performance. In this paper, we explore the important 

aspects that impact cache memory architecture 

performance and cost, including: (1) An overview of 

present state-of-the-art cache memory architectures. (2) 

We examine the latest advances in cache controllers and 

energy management. (3) We explore important aspects of 

cache memory organization, including cache mapping, 

spatial cache and temporal cache techniques. (4) We 

provide an analysis of performance of state-of-the-art 

cache memory architecture implementations including 

new promising memory technologies. (5) We end by 

considering future research areas that may prove 

promising in narrowing the performance gap between 

cache memory performance and processor performance. 

Overall, improvements in cache memory architectures 

stand to make a significant impact in unlocking major 

improvements in high performance computer 

architectures.  

Keywords—cache memory architecture; cache data mapping; 

prefetching; low-power cache; cache coherency 

I. INTRODUCTION 

Modern high-performance computer architectures, such 

as the one shown in Figure 1, would not exist without cache 

memories. Nonetheless, since the first implementations of 

cache memories, the imbalance between the processor 

system performance and the cache memory system 

performance has had a detrimental impact on the overall 

system performance [2].  Amazingly, the gap between 

processor system performance and cache system 

performance was recognized as early as the 1970s [3]. 

 

Figure 1: Photograph of Intel Xeon processor 7500 series die 

showing cache memories (center) [1] 

Unfortunately, sub-optimal cache system performance 

still remains as one of the largest limiting factors to optimal 

system performance right up to present times. To put this 

into prospective, some facts that have been recognized for 

over 30 years include [3]: 

1) It has been estimated that as processor gate counts 

continue to inevitably increase. To be precise: for every 

10-fold increase in transistor gate count, the required 

memory bandwidth demand increases by 30-fold. 

2) The small cache memories within a processor make up 

a larger cost impact, by percentage, than the larger 

external memories. 

3) From the onset of cache memories in the 1970s, it has 

been estimated that the required bandwidth to supply 

the core processors with instructions and data exceeds 

the ability of the cache memory to supply the needed 

bandwidth by a factor of 300%. 

Further, it is estimated that 50% of power consumption in 

advanced computer architectures is a direct result of how 

efficient (or inefficient) the cache memory system performs 

[4][5][6]. Thus, since the introduction of cache memory 

architectures, researchers have and continue to struggle with 

the very same topics of cache coherency [7][8][9], write-

through versus write-back [10] and optimal cache size 

[3][11][12]. To address the abovementioned limitations, 

consistent topics that researchers have heavily researched, 

and continue to research, include the following areas [13]: 

1) Cache memory access prediction improvements related 

to spatial memory access (e.g., locality of data accesses 

by address) and temporal memory access (e.g., locality 

of data accesses in time). 

2) Optimization of cache memory associativity to main 

memory.  In other words, finding the optimal methods 

to map cache memory to main memory. 

3) The development of intelligent software compilers to 

attempt to improve cache accesses based on prediction 

(e.g., determining via software compilers, how likely 

certain memory addresses will be accessed). 

4) Improvements in the mapping of L1 cache memory 

contents to that of L2 cache memory contents. 

5) Advancement in the performance of mapping cache 

memory to main memory via the TLB (Translation 

Lookaside Buffer). 

6) Hardware prefetching enhancements to better supply 

optimal memory prefetcher performance. 

II. OBJECTIVES AND CONTRIBUTIONS 

The objective of this paper is to take the reader to the 

forefront of the battle to improve the imbalance between 

processor system performance and cache system 
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performance.  Specifically, we focus in a number of core 

areas that are further discussed below. 

In Section 3 – “Advances in Cache Data Management: 

Prefetching, Bandwidth Management, Scheduling, and Data 

Placement”, we point to the most recent research related to 

improving how cache memory is used.  We include a review 

of novel advancements in cache prefetching, improvements 

in cache memory bandwidth utilization, and optimizations of 

data placement within the cache memory system 

[14][15][16][17]. Given the fact that cache memory to 

processor system bandwidth is a major bottleneck, we point 

to new research to utilize valuable bandwidth resources in 

the absolute most efficient manner. 

1) As an example, we review promising techniques to 

efficiently1 learn and intelligently associate an array of 

different types of prefetchers to the software that is 

being executed (e.g., selecting the best prefetcher based 

on the application(s) being run). Based on this 

technique, the solution offers a worst case 1.4% to 

18.7% improvement over the best present day 

techniques, while at the same time, using less memory 

and logic overhead [14]. 

2) As yet another example, based on intelligent thread and 

data placement schemes, we point to research that 

provides a 46% increase in cache memory system 

performance as compared to present day NUCA (Non-

Uniform Cache Architectures) [15]. 

In Section 4 – “Leading-Edge Hardware Implementations 

and Opportunities”, we point to modern day challenges and 

potential breakthroughs related to the considerable impact 

that cache memories have on system power requirements, 

access speed, fault tolerance and reliability [4][5][6][18]. 

1) We are intrigued and examine advances that have 

allowed low power battery operated devices to employ 

cache based systems. Such advances offer significantly 

low power consumption, yet provide superior cache 

performance [4][5]. 

2) We further evaluate and provide insight into new 

opportunities to speed up cache memory accesses by as 

much as 11.3% (and an encouraging 8.6% speed up on 

average) when combined with present day NUAT 

(Non-Uniform Access Time) memory [6]. 

In Section 5 – “Special Topics in Cache Memory 

Architectures”, we discuss advances in the overall processor 

and cache memory core architecture [19][20][21][22][23]. 

1) We examine the concept of “cloning” - a technique to 

simulate actual workloads of proprietary programs to 

find optimal cache memory architectures that can then 

be applied to actual real-world applications.  By doing 

so, the processor / cache memory core architecture can 

more easily be evaluated and then optimized [19]. 

2) We point to promising new architectures.  For example, 

we look to new breakthroughs in processor system stall 

avoidance, providing a 6% improvement on a 4-core 

processor system [23]. 

3) We look to advances that proactively and predicatively 

identify cache contents that will not be used in the 

                                                           
1 Efficiency in both memory space and 

hardware/logic/computational complexity implementation. 

future (e.g., dead blocks) so that the unused cache 

content can be replaced by relevant content, thus 

reducing wasted cache energy by 20% [21]. 

In Section 6 – “Conclusion”, we summarize our findings 

and provide a case study of taking cache memory 

architecture research from “concept to reality” via the Intel 

Xeon Haswell processor [24].  We also consider new 

frontiers for future work including optical cache memory 

architectures [25]. 

III. ADVANCES IN CACHE DATA MANAGEMENT: 

PREFETCHING, BANDWIDTH MANAGEMENT, 

SCHEDULING AND DATA PLACEMENT 

Advances in cache data management techniques offer a 

wide range of exciting opportunities to improve overall 

cache memory system performance. In this section, we 

discuss advances related to cache data management 

including: 

• Advanced prefetching that employs a unique way to 

monitor and then select the optimal prefetcher. 

• Bandwidth management techniques based on the 

prediction of bandwidth requirements for multiple 

threads of software running on multiple processor 

cores. 

• Cache data scheduling, that creates virtual cache 

memories that transcend across multiple threaded 

applications and even multiple processors. 

• Unique cache data placement management 

techniques entailing algorithms and architectures 

used to determine where to store data in relation to 

SRAM and STT-RAM (Spin-Transfer Torque 

RAM).  

A. Advanced Prefetching 

Cache Prefetching is a Technique used in modern day 

computer processors to improve the execution speed by 

prefetching instructions/data from main memory and 

supplying the instructions to cache memory. Modern day 

computer processors use high speed cache memory, whereas 

fetching of instructions and data for processing is much 

faster from cache memory as compared to accessing the 

same from main memory. There are multiple techniques to 

implement cache prefetching, and the techniques are broadly 

classified under: (1) hardware based and (2) software based 

implementations. In hardware based prefetching, there is 

dedicated hardware that monitors the stream of 

instructions/data being requested by the program under 

execution. The hardware prefetches the next set of 

data/instructions that the program being executed might 

request. Figure 2 is an example of a hardware based 

prefetching technique (Stream Buffer) as proposed by 

Norman Jouppi [26]. 

In contrast to hardware prefetching, for software based 

prefetching, the prefetching mechanism is applied during the 

compilation time of the program. Compiler based 

prefetching techniques are more widely adopted in the case 

of loops that contain a large number of iterations. At 

compilation time, the compiler predicts the future cache 

misses and inserts a prefetch instruction based on the miss 

penalty and execution time of the instruction. Through 

compiler based prefetching techniques, run time true data 
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dependency issues cannot be resolved during compilation 

time. In this section, we will discuss the recent trends in 

cache prefetching techniques which involves hardware, 

software and a combination of both mechanisms involved.  

 

Figure 2: Stream buffer proposed by Jouppi [26] [27] 

B. The Sandbox Prefetching Technique 

The sandbox prefetching technique is based on the use of 

a Bloom filter. The Bloom filter was proposed by Burton 

Howard Bloom in 1970.  The Bloom filter is a probabilistic 

model to test whether a data element is a member of a set. A 

query to a Bloom filter returns “possibly in set” if the 

element is present or “definitely not in set” if the element is 

not present in the set. 

In the paper “Sandbox Prefetching: Safe Run-Time 

Evaluation of Aggressive Prefetchers”, Pugsley et al. [14] 

presents a hardware base technique which provides features 

of aggressive prefetching, yet avoids bandwidth and cache 

capacity wastage due to aggressive prefetching. The key 

feature of the sandbox prefetching technique is the reduced 

latency overhead in prefetching by using a Bloom Filter 

among other methods. The sandbox prefetching technique 

uses the concept of global pattern confirmation and 

immediate prefetch action, thereby enabling better execution 

performance [14]. 

 
Figure 3: Figure showing sandbox prefetcher architecture [14] 

Figure 3 shows the placement of the sandbox unit within 

the memory hierarchy. As shown in Figure 3, the sandbox 

unit doesn’t impact normal cache actions. The sandbox 

prefetch mechanism proposed by Pugsley et al. [14] has a 

separate sandbox prefetch unit and a sandbox unit. The 

sandbox technique begins by monitoring multiple prefetcher 

algorithms, seeking to find the most effective prefetcher 

algorithm. The sandbox unit keeps the score (hits versus 

misses) of candidate prefetchers, based on the outcome of 

individual cache lines being a hit or a miss. Each time there 

is a cache access, the corresponding prefetcher candidate 

score is incremented based on a hit. Once the score of a 

candidate prefetcher crosses a threshold, the prefetch 

mechanism control is taken over by sandbox prefetch unit. 

Figure 4 shows the sandbox prefetching actions for each L2 

access [14]. Sandbox prefetching maintains a set of 16 

candidate prefetchers and each candidate is evaluated in a 

round-robin fashion [14].   

 

Figure 4: Sandbox prefetching action on each L2 access [14] 

Figure 5 (see next page) shows the performance of 

SandBox Prefetching (SBP), normalized to a no-prefetch 

baseline. The sandbox technique is compared with No 

Prefetching (No PF), Feedback Directed Prefetching (FDP) 

and Address Map Pattern Matching (AMPM). Sandbox 

prefetching provides better performance when compared to 

the other prefetching mechanisms [14]. 

C. Bandwidth Shifting 

Current modern day microprocessors have multiple cores 

and run multiple threads concurrently. Novel techniques 

have been proposed, with the idea of dynamically assigning 

needed bandwidth to applications based on the prefetch 

efficiency of each thread. 

Increased in Multicore System Efficiency Through Intelligent 

Bandwidth Shifting 

Jimnez et al. [16] introduces a technique that increases 

multicore system efficiency through intelligent bandwidth 

shifting.  Data prefetching hides memory access latency, but 

not all of the prefetched data is accurately fetched, thus 

reducing the performance of the system. The technique 

employed by Jimnez et al. provides an efficient software 

mechanism for dynamically assigning memory bandwidth 

for each thread, based on the predicted prefetch efficiency.  

The technique assures backward compatibility [16]. The 

technique further provides the following characteristics: 

• Prefetch based bandwidth shifting to characterize 

performance. 

• Metrics to estimate prefetch usefulness. 

• Novel bandwidth shifting mechanisms to increase 

performance. 

• Evaluation of bandwidth shifting. 
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Figure 5: Performance normalized to no-prefetch baseline [14] 

 

To expand, Figure 7 shows the throughput and 

bandwidth consumption of a subset of benchmarks defined 

in the SPEC CPU2006 benchmark specification. Figure 7, 

indicates Deep, Shallow and OFF regions. In the Deep 

region, the prefetcher uses the longest distance available for 

prefetching.  The Shallow region uses the shortest distance 

for prefetching. Lastly, the OFF region refers to the 

prefetching action being turned off. Figure 7 clearly indicates 

that when more than 16 threads are being used, the 

bandwidth usage and performance saturates. All of the 

performance benchmarks are evaluated on an IBM POWER7 

machine. Jimnez et al. [16] states that the benchmark results 

are not exclusive to the IBM POWER7 machine used by 

Jimnez et al. The efficiency of prefetching applications 

varies, depending on the memory access pattern and the 

availability of bandwidth. Jimnez et al. [16] also states that 

there were no severe impacts observed when changing to 

aggressive prefetch actions. The proposed technique of 

bandwidth shifting uses only DEEP and OFF settings for the 

prefetching mechanism [16]. 

The bandwidth shifting algorithm proposed by Jimnez et 

al. [16] uses an iterative approach.  Initially the configuration 

is set to the most aggressive prefetch setting. Next, the 

algorithm computes the usefulness of prefetching an 

instruction for each thread and tabulates the result. The 

evaluation of prefetch usefulness is done by frequently 

turning on and off the prefetching for each thread and then 

measuring the Instruction Per Cycle (IPC) and bandwidth 

usage under both the on and off configurations. Figure 6 

shows the base implementation of the algorithm [16]. 

The base algorithm shown in Figure 6 introduces a 

problem: there is a lack of hardware resources while high 

Prefetch Usefulness (PU) threads are running on the system 

due to the limited number of prefetch streams that can be 

allocated.  To overcome this problem, as shown in Figure 8, 

Jimenez et al. [16] introduced a modified base algorithm 

which increases performance by 33% when compared to the 

performance of the algorithm shown in Figure 6 [16]. 

 

Figure 6: Base bandwidth Shifting algorithm [16] 

 

Figure 7: Throughout and memory bandwidth consumption characteristics for a subset of benchmarks [16]
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Figure 8: Modified base algorithm [16] 

In the modified algorithm shown in Figure 8, the initial 

mechanism is the same as that of the base algorithm as 

shown in Figure 6.  A number of additional steps are also 

added as follows:  

• Step 1: Measuring system performance by turning 

“off” the prefetching for a thread. 

• Step 2: Testing if there was a positive impact on the 

system when the prefetch mechanism is turned 

“off” for a given thread. 

• Step 3: If there was improvement by turning “off” 

prefetching for a given thread, a decision to turn 

“on” or “off” the prefetch action for a given thread 

will be considered again in the next iteration. 

Figure 9 illustrates the positive effect of the bandwidth 

shifting algorithm on system performance. Figure 9 plots a 

function of the prefetch friendly algorithm “bwaves” (which 

we assign the value “z” to the number of simultaneous thread 

instances running) and the prefetch unfriendly algorithm 

“omnetpp” (which we assign the value “x” to the number of 

simultaneous thread instances running) as benchmarks. 

Specifically, Figure 9 shows the amount of speedup for 32 

processes running simultaneously, with the x-axis 

representing the number of unfriendly algorithm “omnetpp” 

simultaneous thread instances running (“x”) as a function of 

the number of friendly algorithm “bwaves” simultaneous 

thread instances running (“z”).  Thus, x + y = 32 [16]. 

 

Figure 9: Effect on bandwidth shifting on system performance with 

prefetch efficient (bwaves) and inefficient (omnetpp) threads [16] 

D. Scaling Cache Hierarchies Through Computation and 

Data Co-Scheduling 

Today, Non-Uniform Cache Architecture (NUCA) is the 

most widely used method to extract improved performance 

from cache memory systems. Advanced techniques of 

NUCA include: (1) Reactive Non-Uniform Cache 

Architecture (R-NUCA) and (2) Static Non-Uniform Cache 

Architecture (S-NUCA). Recently, better techniques that 

further improve R-NUCA and S-NUCA have been proposed.  

Such improvements provide better cache memory 

management and improved thread scheduling to derive better 

system performance. One such technique is referred to 

Computation and Data Co-Scheduling (CDCS) [15]. 

Computation and Data Co-Scheduling technique (CDCS) 

One example of cache memory scheduling is disclosed in 

the paper “Scaling Distributed Cache Hierarchies through 

Computation and Data Co-Scheduling” by Beckman et al. 

[15]. Beckman et al. proposed a technique called 

Computation and Data Co-Scheduling (CDCS), a technique 

that relates to the placement of threads and data using 

distributed shared caches in a multiprocessor environment. 

The main contributions the Beckman et al. [15] paper are as 

follows: 

• A novel thread and data placement scheme that 

considers both data and access intensity by threads 

across multiprocessor tiles. 

• An enhanced design of a geometric sampling curve 

monitors that scales within a very large NUCA. 

• Hardware that enables incremental reconfiguration 

of NUCA caches. 

The CDCS technique then tags data to the virtual cache 

using virtual cache “ids” (IDs).  For every L2 level cache 

miss using the VC (Virtual Cache) “id”, CDCS determines 

where the cache line resides in the memory subsystem. A 

Virtual Translation Buffer, referred to as a “VTB”, as shown 

in Figure 10, stores the configuration for all virtual cache 

memory groups that a given executing thread can access. 

Virtual cache configurations are periodically changed by 

CDCS software (every 25ms); changing both the bank and 

partition sizes on the fly during runtime, based on how data 

is accessed by the executing threads. A block diagram of 

how the virtual cache is reconfigured is shown in Figure 10. 

 

Figure 10: An example of LLC access using CDCS [15] 
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Figure 11: CDCS implementation with 64 tile CMP [15] 

Figure 11 shows the hardware black box hardware 

implementation of CDCS. Each tile has a core and a slice of 

Last Level Cache (LLC). An on-chip network topology 

establishes connection between a tile and the memory 

controllers that reside at the edges. 

CDCS is based on NUCA methodology and allows 

software to divide each cache bank into multiple partitions. 

Collections of portioned caches are grouped and are made 

visible to software threads as a single cache. The grouping of 

the caches provides the software with flexibility to define 

multiple virtual caches and to configure them into different 

sizes of virtual cache memory [15]. 

Figure 12 shows the thread and data placement under R-

NUCA techniques, where thread private data is stored for 

threads in the processor’s local memory bank. Figure 13 

shows how the thread and data is placed using the CDCS 

technique provides a 400% higher speed-up over the R-

NUCA technique [15]. 

 

 

 

Figure 12: R-NUCA workload organization schemes on 36 tile 

CMP [15] 

CDCS software provides different levels of virtual 

caches. During execution, each thread is provided with a 

thread private cache at the OS-level.  Common data between 

the threads of the same process are placed in a process 

private cache, and common data between the processes are 

placed in a global virtual cache.  Based on these techniques, 

faster access to data is provided and cache pollution is 

reduced. The CDCS technique provides a 46% increase in 

performance when compared other NUCA techniques, and 

provides 36% better energy efficiency when compared to S-

NUCA [15]. 

 

Figure 13: CDCS workload organization schemes on 36 tile CMP 

[15] 

E. Adaptive Placement Policies for Data in Cache Memory 

Systems 

Another leading area of research is the intelligent 

placement of cache memory contents in differing types of 

memory within cache memory systems and main memory. 

For example, a hybrid of cache memory system consisting of 

DRAM, SRAM and even STT-RAM.  

An Adaptive Placement and Migration Policy for an STT-

RAM Based Hybrid Cache System 

One such paper that considers new data placement 

polices for data blocks in cache memory systems is the paper 

“Adaptive Placement and Migration Policy for an STT-

RAM-Based Hybrid Cache” by Wang et al. [17]. \Wang et 

al. [17] proposes an Adaptive block Placement and 

Migration policy (APM) for hybrid caches. The technique 

proposed by Wang et al. places the block in either STT-

RAM (Spin-Transfer Torque – RAM) or SRAM, based on 

an adaptive placement and migration policy algorithm. The 

technique proposed by Wang et al. combines the advantages 

of low leakage power and high packing density offered by 

STT-RAM with the low write overhead of SRAM [17]. 

To expand, Wang et al. categorizes LLC cache accesses 

into three distinct classes: (1) core-write, (2) prefetch-write 

and (3) demand-write. Turning to (1) - core-write, a core-

write is a write from the core to the LLC. For a write through 

core cache, a core-write entails directly writing from the core 
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through to the LLC. For a write-back core cache, a core-

write entails evicting dirty data from the core cache and a 

write back to the LLC. For (2) - prefetch-write, a prefetch-

write is a write replacement of the block from LLC caused 

by a prefetch miss. For (3) - demand-write, a demand-write 

is a write block replacement from LLC caused by a demand 

miss. The technique proposed by Wang et al. [17] is based 

on block replacement if the request is initiated by a write 

access. Wang et al. [17] introduces an intelligent block 

placement policy as follows: 

• SRAM should be used for the majority of the write 

actions, thus avoiding write overhead involved in 

STT-RAM. 

• Frequently used blocks should be placed in LLC to 

achieve reduced memory access latency, reduced 

overhead, and less complexity within the overall 

design. 

• Block placement is often initiated by a write access 

to the LLC which Wang et al. further 

subcategorizes to be either a (1) prefetch-write, (2) 

core-write or (3) demand write as discussed above 

[17].  

 

Figure 14: Distribution of LLC write accesses. Each type of write 

access accounts for a significant fraction of total write accesses 

[17] 

Figure 14 shows the breakdown of block placement for 

(1) core-write, (2) prefetch-write and (3) demand-write to the 

LLC. Wang et al. [17] further teaches two types of ranges: 

(1) read-range and (2) depth-range, which is further 

described as follows: 

• Read-Range: The read-range is a property of a 

cache block that fills the LLC by a demand-write or 

prefetch-write request. It is the largest interval 

between consecutive reads of the block from the 

time it is placed into the LLC until the time it is 

evicted [17]. 

• Depth-range: The depth-range is a property of a 

core-write access. It is the largest interval between 

accesses to the block from the current core-write 

access until the next core-write access to the same 

block. The “depth” refers to how deep the block 

descends into the LRU stack before it is accessed 

again [17]. 

In Figure 15, “Ra” represents the Read block “a” and 

“Wa” represents the Write block “a”. The distance between 

successive block reads is referred to as “read-range” as 

discussed above. The distance between a write access to that 

of reading the same data is referred to as “depth-range” as 

discussed above. “Wa” equals 0 and represents an evicted 

block from cache, e.g., the least used data from cache is 

kicked out from the cache memory.  Read-range/depth-range 

is further classified as follows [17]: 

• Zero-read/depth-range: Data is filled into the LLC 

by a prefetch or demand request/core-write request, 

and it is never read/written to again before it is 

evicted. 

• Immediate-read/depth-range: The read/depth-range 

“I” (which is further set to be smaller than a 

parameter “m”, where m = 2 is the number of 

SRAM ways in the STT-RAM/SRAM hybrid cache 

configuration). 

• Distant-read/depth-range: The read/depth-range is 

larger than m = 2 and at most, the associatively of 

the cache set which is 16 in STT-RAM/SRAM 

configuration. 

 

Figure 15: Example illustrating read-range and depth-range [17] 

The technique proposed by Wang et al. [17] uses the 

read-range to analyze the access patterns of LLC.  Figure 16 

shows each access pattern and each category is further 

classified based on read-range/depth-range. A summary of 

the results are as follows: 

• Zero-read/depth-range corresponds to 26% of all 

prefetches on average. For prefetch-writes, because 

the category is never used until a miss occurs and 

then a block is evicted from cache, the prefetched 

block should be placed in SRAM as to avoid the 

write overhead of STT-RAM.  

• Immediate-read-range corresponds to 56.9% on 

average. The data associated with this category 

should likewise be placed in SRAM to provide fast 

access for immediate use. Using SRAM for this 

category mitigates STT-RAM involvement in 

eviction once the cache block is dead.  

• Distant-read corresponds to 17.5% on average.  For 

this category, data should be placed in STT-RAM 

to make use of large capacity to avoid cache misses. 

In the proposed design by Wang et al. for core-write 

access misses, the data is directly written back to the main 

memory. Zero-read-range blocks should be bypassed from 

cache because the data will not be used except for eviction  

from cache of a dead block. Thus, bypassing zero-read-

range blocks will reduce the write operations to LLC. 
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Figure 16: The distribution of access pattern of each type of LLC write access [17] 

 

Figure 17: Flow chart of the adaptive block placement and migration mechanism (errors as shown in the original) [17] 

Figure 17 shows the flow chart of the proposed design. 

Each block is associated with a prediction bit indicating 

whether the block is dead. On a cache miss the prefetched 

data is placed into the SRAM; and the prediction bit that 

predicts if the block is dead is set to 1 (e.g., it is assumed 

dead on arrival). An access bit pattern predictor, predicts 

whether the block in SRAM is dead. The proposed scheme 

reduces the overhead of STT-RAM by using the following 

schemes [17]: 

• By bypassing dead on arrival blocks. 

• By introducing an SRAM line filter to filter write 

operations caused by inaccurate and immediate-

read-range prefetch requests. 

• By placing frequently used core-write blocks in 

SRAM. 

The access pattern predictor makes a prediction in the 

following three conditions: (1) when a core-write request is a 

hit within the STT-RAM lines, the write burst prediction 

table will be accessed to predict whether it is a write burst 

request; (2) for each read hit request within the SRAM lines, 

the dead block prediction table will be accessed to predict 

whether it is a dead block; (3) on a demand-write request, the 

dead block prediction table will be accessed to predict 

whether the request is a dead-on-arrival block request [17]. 

Overall, the block placement technique proposed 

achieves higher performance by placing distant-read-range 

blocks in STT-RAM and by bypassing the zero-read-range 

cache lines in order to avoid write overhead; SRAM 

provides better efficiency in evicting inaccurately fetched 

data blocks. 

IV. LEADING-EDGE HARDWARE IMPLEMENTATIONS 

AND OPPORTUNITIES 

Given the steadily growing market for battery-powered 

devices (e.g., mobile phones or wireless embedded sensor 

networked devices), energy efficiency has become a crucial 

factor in the development process. Advances in technology 

have and will further lead to even smaller device sizes, 

driven by voltages as small as possible. Given these 

advances, the system’s overall energy dissipation will be 

influenced by up to 50% by the cache. New techniques have 

been proposed that optimize already existing architectures to 

minimize the overall power consumption in order to provide 

longer battery life, mitigate the design limiting effects of 

temperature, and provide better performance [4][5][18].  
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On-chip cache memories make up a large fraction of the 

overall chips size and therefore play a significant role in the 

overall power consumption of the system. Recent research 

has shown that the following factors influence the energy 

consumption by a significant amount [4][5][18]: (1) static 

leakage current, especially in multi-port architectures, (2) the 

use of Error Detection Codes (EDC) and (3) the use of Error 

Correction Codes (ECC). Additionally, a new concept that 

utilizes the charge leakage of a cell to improve access 

latency and ultimately also improves the energy efficiency is 

introduced. The following sub-sections provide a brief 

introduction into each of these areas. 

A. Leakage Current 

Two types of leakage currents mainly contribute to the 

overall cache leakage current: (1) cell leakage current and (2) 

bit line leakage current.  Further, there are a number of 

factors that increase leakage current, including the use of 

multi-port caches and the fact that leakage current scales 

proportionally with the area of the circuit [4].  In the 

following, we explore two different promising approaches to 

reduce the cache memory power dissipation, namely, 

Dynamic Memory Configuration and Software Self-

Invalidation and Data Compression. 

1) Dynamic Memory Configuration 

Figure 18 and Figure 19 show a six transistor single-port 

and dual-port SRAM cell, respectively. The additional word 

lines needed to access transistors T7 and T8 almost double 

the silicon area of the single-port configuration. Keeping the 

bit lines high, as well as pre-charging, contributes 

significantly to the overall power dissipation [4]. 

 
Figure 18: Single-port SRAM cell [4] 

 
Figure 19: dual-port SRAM cell [4] 

The following equations describe the leakage currents 

per cell displayed in Figure 18 and Figure 19 [4]: 

 

𝐼𝑠𝑖𝑛𝑔𝑙𝑒 𝑝𝑜𝑟𝑡 = 𝐼𝑇1 + 𝐼𝑇5 + 𝐼𝑇4 

𝐼𝑑𝑢𝑎𝑙 𝑝𝑜𝑟𝑡 = 𝐼𝑇1 + 𝐼𝑇5 + 𝐼𝑇4 + 𝑇7 

 

Previously used techniques to reduce leakage current 

were based on a fixed bank size and employed duplicated 

word and bit lines at the expense of either moderate 

performance degradation or a large area overhead.  Bajwa et 

al. [4] proposes a new cache architecture using isolation 

nodes to partition a cache memory block into two virtually 

independent sections that also employ real-time access of 

addresses via multiple ports. 

Figure 20 shows the proposed placement of the Isolation 

Control Line (ICL) and isolation node on the corresponding 

bit lines to divide the block into an upper port and lower 

port, respectively. This approach enables dual-port access 

without the need of a second pair of bit lines and thus 

reduces the leakage current and the silicon area needed. Even 

though additional ICLs are placed every n word lines, Bajwa 

et al. [4] states that the performance degradation for a value 

of n = 8 poses no negative effects. The statistical pattern of 

accesses of addresses of targeted applications determines the 

overall placement of the nodes. 

 

Figure 20: ICL and Isolation node placement [4] 

The efficiency of this dynamically partitioning is based 

on an applied algorithm to determine the ICL and isolation 

node placement.  Considerations that go into determining the 

optimal algorithm include: delay, power dissipation and the 

overall complexity of the proposed algorithm. Bajwa et al. 

[4] evaluates two algorithms: (1) an algorithm for optimal 

partitioning that minimizes bit line latency and power 

dissipation and (2) an algorithm that does not require a new 

partition for every memory access. The pseudo code for 

algorithm (1) is as follows: 
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 addr(A) <1:n>; addr(B) <1:n>; 

 where adr(A) = i > addr(b) = j; 

 if i = j + 1 return ICL(j) 

 else return ICL(j) and ICL(i-1) 

 

The pseudo code for algorithm (2) is as follows: 

 

 addr(A) <1:n>; addr(B) <1:n>; 

where adr(A) = i > addr(b) = j; 

k = current ICL; 

if (j ≤ k < i) return NUL (no new DMP); 

else return (j + (i-j)/2); 

 

Applying the above described dynamic memory 

configuration reduces the silicon area that is needed because 

no additional bit lines and pass transistors are needed. This 

results in a reduced leakage current and reduced bit line pre-

charge current by a factor of 50% of the value of a typical 

hardwired multi-port memory. Lastly, the dynamic 

configuration also introduces less latency due to shorter 

active bit lines. The leakage current of a memory core with 

N rows and M columns can now be calculated using the 

following formula: 

 

𝐼𝑛𝑒𝑤 =
𝑁

2
𝑀(𝐼𝑇1 + 𝐼𝑇5 + 𝐼𝑇4 + 𝑇7) 

 

A paper entitled “Cache Memory Architecture for 

Leakage Energy Reduction” by Tanaka et al. [5] states that 

future high performance processors need even larger 

amounts of cache to bridge the speed gap between the 

processor and the external memory. Given the increase in 

cache size, it is said that energy dissipation in cache memory 

makes up 50% of the total energy dissipation of the 

processor system. Higher transistor counts and increased 

clock frequency result in decreased battery lifetime and 

higher temperature. To ensure performance improvement of 

future microprocessors, it is necessary to improve the energy 

efficiency of cache memory systems. 

2) Software Self-Invalidation and Data Compression 

Tanaka et al. [5] introduces a low-energy cache memory 

hierarchy for on-chip multiprocessors, which exploits gated-

Vdd transistors and explicit gated-Vdd control. Two 

mechanisms are introduced: (1) leakage energy reduction by 

software self-invalidation and (2) leakage energy reduction 

by data compression. The memory hierarchy is displayed in 

Figure 21. It consists of L1 instruction and data caches, a 

write buffer, a L2 unified write-back cache on chip, and an 

external main memory. The compressor and decompressor 

blocks are used to exploit energy leakage reduction as 

explained later. 

Cache blocks can become invalid if they receive an 

invalidation request. Turning off these invalid blocks using a 

gated-Vdd results in significant energy savings. In addition 

to this method, a self-invalidation mechanism to further 

increase the number of blocks that can be turned off is 

applied. This mechanism makes use of a modified load/store 

instruction called “last-touch load/store”. In addition to the 

conventional load/store function, the new instruction can 

validate cache blocks after accessing them. 

 

Figure 21: Cache memory hierarchy [5] 

The invalidation is based on two conditions: (1) a cache 

block is invalidated at the same time as it is accessed, and (2) 

a word is marked when it is accessed. The cache block is 

invalidated when all words in the block get marked [5]. 

To enable the abovementioned improvements, slight 

modifications to the conventional L1 cache memory 

structure are necessary. Last-touch flag bits are added as a 

part of the L1 cache tag information. Each flag corresponds 

to a word in the block. Figure 22 illustrates the memory 

structure for a 16-byte block made up of four words each. 

Tanaka et al. states that “When a last-touch-word load/store 

instruction is executed the corresponding flag bit is cleared. 

On the other hand, when a last-touch-block load or store 

instruction is executed, all flag bits are cleared (as depicted 

in the second row in the figure). Then, a block is invalidated 

when all the flag bits are cleared.” [5]. 

The gated-Vdd design is implemented as shown in Figure 

23. It is worth mentioning that this figure is conceptual since 

the address tag and data parts of the block relate to one or 

more gated-Vdd transistors. 

 

Figure 22: L1 cache memory structure [5] 

The data compression technique employs data 

compression thresholds of ¾, ½ and ¼. Compressed blocks 

are stored in the L2 cache and the remaining space is turned 

off using gated-Vdd transistors. The overhead of 

compression and decompression is negligible because the L2 

cache access frequency is not high. In general, a compression 

ratio as small as possible is desirable, because data 
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compression as a whole results in higher processing cost, 

larger chip area, and longer latency. These factors are 

important when considering the tradeoffs between cost, 

performance, and the amount of energy conserved [5]. 

 

Figure 23: (conceptual) L1 gated-Vdd control [5] 

The tag information for the L2 cache is shown in Figure 

24. “c1” and “c0” correspond to the compression thresholds 

used above. A combination of “00” equals no compression, 

“01” equals ¾ compression, “10” equals ½ and “11” equals 

¼ compression (of the original size of the data). Three 

transistors are needed to support this feature, as shown [5]. 

 

Figure 24: L2 gated-Vdd control [5] 

Five kernel programs in the SPLASH-2 suite were used 

for the evaluation of the software invalidation technique.  

 

Table 1 contains the input data size and input file. Table 3 

displays the simulation results, normalized to “base”, which 

refers to an execution without gated-Vdd control. “inv.off” is 

with gated-Vdd control of invalid blocks and “last-touch” is 

the execution with invalid blocks supported by the modified 

last touch instructions. 

Table 2 lists the number of self-invalidations performed 

by last-touch word or block instructions. The results in Table 

2 and Table 3 show that leakage energy was significantly 

reduced for last touch instructions for “LU-noncontig[uous]” 

and “RADIX” [5]. 

 

Table 1: Input data sizes / input file for SPLASH-2 programs [5] 

 
 

Table 2: The number of self-invalidations [5] 

 
 

Table 3: Results of last-touch load/store scheme in L1 cache [5] 

 

B. Error Detection Codes (EDCs) and Error Correction 

Codes (ECCs) 

Energy particles can cause soft errors in cache memories. 

Modern processors employ EDCs and ECCs to counteract 

these errors. Employing these techniques result in a 

significant overhead in terms of area and energy. Farbeh [18] 

proposes a new cache architecture to reduce energy 

consumption and reduce the area overhead that result from 

using EDCs and ECCs in L1 caches. 

Soft errors are a major reason for system failures. They 

can appear in the shape of Single Event Upsets (SEUs) or 

Single Event Multiple Bits Upsets (SEMUs). The 

technological advances mentioned in previous sections 

(improvement of feature size and supply voltage) result in a 

new challenge of handling the increased amount of SEUs 

and SEMUs. In a 40nm feature size, the probability of an 

SEMU caused by a particle strike is about 40%; this 

percentage increases if low power techniques are applied 

[18]. 

The newly proposed architecture called “Per-Set 

Protected Cache (PSP-Cache)” makes use of the fact that in a 

set associative L1 cache, data words in all cache ways are 

accessed in parallel. This enables minimization of the 

number of redundant bits without reducing the protection 

capability of EDCs and ECCs [18]. 

Figure 25 displays a conventional cache architecture (left 

side) and the proposed architecture (right side). In a 

conventional cache architecture, data is applied to “Way 

Selection Logic”.  Further, the output of “Tag Comparison 

Logic” selects data based inputs from the cache.  
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Figure 25: Abstract view of (left) conventional cache architecture and (right) proposed PSP cache architecture [18] 

This data then proceeds to the EDC/ECC 

Checker/Generator Logic and is delivered to the data bus. As 

one can see in the right-hand side of Figure 25, a single code 

gets assigned to the data of all cache ways and the EDC/ECC 

Checker/Generator Logic operates on all accessed data [18]. 

Further, a parity code is applied, which is mostly used to 

protect instruction and data cache data integrity.  For the 

parity code, the number of redundant bits needed to detect a 

specific number of bit errors is independent of the data 

length. Therefore, the number of bits required to protect a 

single cache way is equal to the number of bits required to 

protect all N cache ways [18]. 

“The main features of the proposed architecture are as 

follows: 

• A negligible modification of cache architecture is 

required to implement PSP-Cache; 

• It is applied to the tag array of cache memories in 

addition to data array. Moreover, both D-cache and 

I-cache can take advantages of this architecture; 

• It is independent of cache protection granularity. 

Hence, all set-associative caches with per-X-bit 

EDC/ECC protection, when X is between a single 

byte to the cache line length, can be transformed to 

PSP-Cache architecture; 

• The efficiency of the proposed architecture 

improves by increasing the cache associatively.” 

[18] 

This architecture was evaluated in terms of energy 

consumption, area, and reliability. 

1) Energy Consumption and Area Overheads 

Redundant bits are the major source of area and energy 

overheads. The Checker/Generator unit’s contribution to 

both area and energy overhead is smaller than 1% and is 

therefore negligible. The results displayed in Table 4 show, 

that the reduction in the number of redundant bits in PSP-

Cache is proportional to the cache associatively. Required 

redundant bits are reduced by 50%, 75%, 87.5% in 2-way, 4-

way and 8-way associative caches, respectively [18]. 

Figure 26 displays the improvement in energy overhead 

of PSP-Cache for different cache architectures, normalized 

to the baseline cache. An overhead reduction by 49%, 73% 

and 85% for 2-way, 4-way and 8-way set-associative caches 

can be achieved, respectively. 

2) Reliability Analysis 

For this analysis, the effect of the newly introduced 

architecture on SEUs and SEMUs is taken into account. It 

was concluded that the architecture does not hurt the 

capability to detect and correct SEUs or SEMUs, regardless 

of the data length. Thus, it does degrade the protection 

capability of EDC/ECC codes [18]. 

Table 4: Number of redundant bits required to protect cache for 

different cache associatively and protection codes [18] 

 

 

Figure 26: Normalized dynamic energy for baseline cache and 

PSP-Cache [18] 
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C. Exploiting Row Access Locality 

DRAM is commonly used as the main memory of 

computer systems but its access latency continues to be a 

critical bottleneck for system performance. In the paper 

“ChargeCache: Reducing DRAM Latency by Exploiting 

Row Access Locality”, Hassan et al. [6] introduces a new 

concept called ChargeCache. The goal of ChargeCache is to 

reduce the average DRAM access latency time without 

modifying existing chips, thus improving overall main 

memory and cache memory performance. The general 

principle is to keep track of the amount of charge of a 

recently accessed row and to use this information to 

determine the timing in which a row can be accessed [6]. 

The architecture mainly dictates the latency of DRAM, 

specifically the length of the bit line. Each pair of transistors 

is connected to sense amplifiers through a bit line as 

illustrated in Figure 27.  

 

Figure 27: DRAM Sub-Array (left) and DRAM cell (right) [5] 

Sense amplifiers are heavy in terms of cost; thus, many 

DRAM cells are typically connected to the same bit line. The 

additional length results in an increase in resistance and 

parasitic capacitance on the path between the cell and the 

sense amplifier, thus higher latency. To achieve an 

improvement in performance and energy efficiency, two 

major observations are exploited [6]: 

• Due to bank conflicts, many applications tend to 

access rows that were recently closed. This form of 

temporal locality is referred to as Row Level 

Temporal Locality (RLTL). The important outcome 

of this observation is that a DRAM row remains in 

a highly-charged state when accessed for the second 

time within a short interval. 

• DRAM cells leak charge over time. The charge is 

either replenished by an access to the row or a 

refresh operation. The current amount of charge 

determines the operation time of the sense amplifier 

and therefore dictates the access latency. Hence, 

recently replenished cells can be accessed using a 

significantly lower access latency than the case 

when the cell has less charge. 

ChargeCache is a new mechanism that exploits these 

observations. The main idea is to keep track of the addresses 

of recently accessed DRAM rows and provide accesses to 

these with a latency that depends on their level of charge. 

The memory controller maintains a small table that contains 

the addresses of recently accessed rows. The memory 

controller then checks this table before accessing a new row 

to check if the address of the row is present. A hit in this 

sense means that the row can be accessed with lower latency; 

otherwise regular latency timing occurs. This process 

requires a mechanism to periodically invalidate entries from 

the table so that the table only contains addresses of cells 

with a high amount of charge [6]. 

Figure 29 illustrates the steps needed to transfer data 

from a DRAM cell to the sense amplifier and their mapping 

to DRAM commands. A detailed explanation can be found 

in [6]. States 4 and 5 refer to the fully recharged state of the 

cell after an access. State 6 represents the leakage of charge. 

If the cell has not been refreshed for a certain amount of 

time, thus has lost too much charge, its state may be flipped 

in the table. To avoid these cases, the controller refreshes 

DRAM cells within a certain interval, the so-called refresh 

interval. As stated earlier, a low amount of charge 

corresponds to a longer access latency. This means, that the 

sense amplifier takes longer to reach states 3 and 4. If the 

charge is high, the perturbation caused by the cell on the bit 

line voltage is high; the cell can be accessed earlier because 

it takes a shorter time to reach states 3 and 4. This enables a 

reduction of the time intervals tRCD and tRAS, as shown in 

Figure 29. 

ChargeCache is implemented by adding (two main 

components to the memory controller): a tag-only cache that 

stores the addresses of the highly-charged rows and a set of 

two counters to invalidate entries from the table. An 

overview of these components is shown in Figure 28. 

 

Figure 28: Components of the ChargeCache Mechanism [6] 

To expand, if a PRE command is issued to a bank, the 

memory controller stores the address of the row that was 

activated in the table. Some interfaces allow the memory 

controller to pre-charge all banks with a single command. In 

this case, all addresses are inserted into the table. The table 

itself is finite, therefore the oldest entries may be evicted if 

no more space is available and new row addresses are 

entered [6]. 

If an ACT command is issued, ChargeCache searches for 

the corresponding row in the table. On a hit, lower tRCD and 

RAS are applied for subsequent READ/WRITE and PRE 

operations, respectively [6]. A miss results in using the 

default timing [6]. 
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Figure 29: Timing parameters and commands used to read data from DRAM [6] 

 

Given the continuous leakage of cells, entries must be 

invalidated after a certain amount of time. Using a clock to 

track the expiration time for each entry would result in 

increased storage cost and complexity of the implementation. 

Therefore, two counters that count clock cycles are used [6]. 

ChargeCache [6] evaluates the reduction in DRAM 

timing parameters, namely the time periods tRCD and tRAS 

using SPICE simulations. Different charge amounts will 

result in different bit line voltage levels during cell 

activation, as displayed in Figure 30.  

As shown in Figure 32 below, ChargeCache achieves up 

to 8.1% (11.3%) speed-up for a single core (eight-core) 

processor and on average obtains 2.1% (8.6%) speed-up for a 

single core (eight-core) processor. Combining ChargeCache 

with NUAT leads to an improvement of 9.6% on average for 

an eight-core processor. 

Because ChargeCache reduces the overall execution 

time, in addition to improving access time, ChargeCache 

leads to significant energy savings as well. Figure 31 

illustrates that ChargeCache reduces energy consumption by 

up to 6.9% and an average of 1.8% for a single-core 

processor system, and a reduction of up to 14.1% and an 

average of 7.9% for an eight-core processor system.  

 

Figure 30: Effect of initial cell charge on bit line voltage [6] 

 

Figure 31: DRAM energy reduction of ChargeCache [6] 

 

Figure 32: Speedup with ChargeCache, NUAT and Low-Latency DRAM for single-core and eight-core workloads [6] 
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V. SPECIAL TOPICS IN CACHE MEMORY 

ARCHITECTURE 

The cache memory architecture plays an important role 

in modern day computer systems. As discussed above in 

Section 1, the advancement of performance of cache 

memory systems is not as rapid as that of processor 

performance. In recent years, new techniques have been 

proposed to improve cache memory performance. This 

section provides insight into the analysis or core memory 

architecture performance related to real-world workload 

analysis versus simulated workload analysis.  This section 

then focuses on the advances in core cache memory 

architectures, provides a study of the leading methods to 

improve core cache memory architectures, and illustrates 

their performance. 

A. Cloning of the Spatial and Temporal Memory Access 

Behavior 

We first start with a discussion and analysis related to 

verifying optimal core memory architectures on real-world 

workloads versus simulated workloads. One persistent 

problem faced by computer architects is that most clients or 

companies do not wish to share their proprietary workloads 

(e.g., their software). In other words, companies are not 

willing to provide system architects with their proprietary 

software that runs on high performance computer systems.  

Thus, proper analysis and optimization of cache memory is 

not possible.  In order to address this problem, architects use 

open source versions of software or have to reconstruct the 

software based on the description provided to them. This 

practice is time consuming and still leaves architects 

guessing about the requirements of the clients. An alternative 

is to clone the software without reading or accessing the 

proprietary information in the software code.  

1) STM: Cloning of the Spatial and Temporal Memory 

Access Behavior 

Awad et al., proposes a solution which Awad et al. 

generally refers to as “STM” (Spatial and Temporal 

Memory) [19]. To clone the memory access behavior of a 

software program, the cloning methodology should read both 

spatial and temporal memory access behavior. STM gathers 

memory access trace behavior statistics and then generates 

clones that produce memory access models similar to the 

proprietary software program. The trace clone or synthetic 

clone generated is then passed through a simulator. The 

inter-working of the STM can then be understood.  

Consider an example of the following memory access 

pattern at a cache block level: 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 

3, 4, 5, 6, ...,: the access pattern shows a simple block 

address stream, containing both spatial and temporal locality 

behavior. Another assumption is that the cache is fully- 

associative with the size of four cache blocks and employs 

LRU (Least Recently used). In the example, the access 

pattern misses every four access, which results in a hit rate of 

75%.  Further, we consider optimal and sub-optimal stride 

values (where a stride value is the address increment value in 

memory between the start of successive memory elements, 

measured by the overall size of the memory element) [19].  

The working of the STM can be understood by using six 

different approaches to generate a clone for the 

abovementioned example [19]: 

• In the first approach as shown in Figure 33, a single 

dominant stride +1 is considered. In this case the 

stride value generates a hit rate of 100% which is 

not correct. 

• In the second approach, as shown in Figure 33, an 

address transition graph is used, where each block 

address is a node and each edge connects the node  

 

 

Figure 33: Methods for modeling memory access [19] 

  

https://en.wikipedia.org/wiki/Computer_data_storage#Primary_memory
https://en.wikipedia.org/wiki/Array_data_structure
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• to its successor and the transition probability. The 

measured hit rate, when 100,000 Monte Carlo 

simulations were run, was 46.8%. The measured hit 

rate is not even close the hit rate of the original 

stream access. 

• In the third approach, strides are recorded instead of 

addresses. After construction, an address trace using 

the stride frequency table, the measured cache hit 

rate over a 100,000 Monte Carlo simulations was 

46.8%, which is still not close to the desired hit 

rate.  

• In the fourth approach, a stride transition graph is 

used, where each stride is a node and the probability 

of transition is the edge. Over a 1000,000 Monte 

Carlo simulations, the hit rate is found to be 67.8%, 

which is not the desired hit rate but much closer 

than the previous approaches.  

• In the fifth approach, instead of just using the 

previous stride, the history of the stride transitions 

is maintained. With a history depth of two (2) the 

hit rate over a 100,00 Monte Carlo simulations is 

found to be between 74.3 to 75.7%. 

• In the sixth approach, the depth of history of the 

stride, when increased to three (3) gives a hit rate of 

75%. STM adopts the stride pattern approach as its 

foundation. 

The profiling of memory access is done using the 

profiling structure as shown in Figure 34. The Stack 

Distance Probability (SDP) table shows the probability of 

accessing the most recently used entries at the head of the 

table. The Stride Pattern Probability shows the possible 

stride values that can be the successor for the past value. In 

Figure 34, M represents the depth of the stride history 

pattern, (Z0, F0) denotes the first stride value. The SDP 

tables are updated using the tags of the blocks which are 

most recently used. When a new address is updated the SDP 

table is searched for a matching tag. If the tags match, then 

the SDP table is updated, else the Stride Pattern Probability 

(SPP) table is updated.  Figure 35 shows how the SPP table 

is updated. Apart from this, during profiling the fraction of 

updates to the SDP table (fSD) and the number of writes are 

also collected. 

 

Figure 34: Profiling structures [19] 

The next step is to generate a clone based on the 

profiling. Both the SDP and SPP tables are scaled by the 

scaling ratio, which is the ratio of the required number of 

memory references (Nnew) to the number of memory accesses 

calculated during profiling (Norginal). The clones are 

generated using four random numbers which help choose: 

(1) which table to use (SPP or SDP), (2) to generate a read or 

a write, (3) to select the row in the SDP table, and (4) to 

select the column in the SDP table. This process is repeated 

until Nnew accesses have been generated or until relevant 

entries in the SP tables are exhausted [19]. 

 
Figure 35: Updating SP tables [19] 

2) Validation and Evaluation Analysis 

To validate STM as taught by Awad et al., a simulator 

called the “gem5” was used to run 27 SPEC CPU2006 

benchmarks. The system configurations used for collecting 

the profiles is shown in Table 5. For validating STM, 400 

different configurations per the benchmarks were used for 

predicting accuracy of L1 cache miss rates, L2 miss rates, 

and TLB miss rates. The metrics used for validation rank the 

accuracy and correlation coefficient. The relative 

performance ranking is calculated by comparing every 

different cache/prefetcher/TLB configuration with an 

appropriate L1/L2/TLB miss rate. 

 

Table 5: Configurations for the system used for profiling [19] 

Component  Configuration 

CPU  x86-64 processor, atomic mode, 2GHz 

L1 Cache  64B blocks, 32 KB size, 2-way, LRU 

L2 Cache 64B blocks, 512KB size, 8-way, LRU 

Main memory   2 GB 

OS  Linux, Gentoo release 1.12.11.1 

 

Figure 36 (see next page) shows the rank accuracies for 

STM, Single Dominant Stride (SDS), and “West”. SDS and 

West are proposed cloning mechanisms that have been 

evaluated against STM. The ranking accuracies are obtained 

by fixing the L1 cache configuration to 16KB size, 2-way 

associatively with a 64-block size. The L1 cache is 

augmented with a stream buffer prefetcher. From Figure 37 

it can be seen that STM performs better than SDS and West. 

Although, SDS tries to capture the spatial locality behavior, 

it is unable to properly capture spatial behavior. For a further 

understanding, the miss rate map for 12 representative 

benchmarks for STM is plotted as shown in Figure 37. From 

Figure 37, it can be seen that STM performs well except 

against two benchmarks: “Zeus” and “h264”. [19]. 
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Figure 36: Rank accuracies [19] 

 

Figure 37 Comparisons between the original and the L1 miss rate  [19] 

 

B. Read Write Partitioning (RWP) 

The processor is stalled when there is a cache read miss 

and the instructions following the miss are dependent on this 

data. In a typical code, write misses are usually not in the 

critical path of execution. Whereas read misses or load 

requests are in the critical path. Most cache management 

mechanisms do not take this into account. To exploit this 

disparity, the cache lines can be differentiated into clean and 

dirty lines.  

1) Read Write Partitioning Improvements 

The paper “Improving Cache Performance Using Read-

Write Partitioning” by Kahn et. al. [23] provides 

improvements to Read Write Partitioning (RWP) that 

provides an average of 5% speed-up across the entire SPEC 

CPU2006 suite. In this section the motivation, framework 

and performance analysis is illustrated for RWP 

improvements.  

The motivation of RWP is to exploit the disparity 

between read and write misses to improve the cache 

performance. There have been many attempts to differentiate 

between critical and non-critical lines. Load and store 

instructions are treated differently in the processor pipeline. 

The goal of RWP is to increase the probability of cache hits 

for critical read requests. For RWP, RWP divides the last-

level cache into two logical partitions for clean and dirty 

lines. It also predicts the best partition sizes to increase the 

likelihood of future read hits. 
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Figure 38: Drawbacks of not taking read-write differences into account [23] 

The main motivation can be achieved by simply favoring 

cache read lines (e.g., read requests for cache lines) over 

write lines (e.g., write requests for cache lines). To achieve 

this, the cache can be sorted into two categories, read lines 

and write only lines, and then based on that, favor read lines 

when making replacement decisions. This classification is 

only possible by predicting if clean lines will be written to or 

if dirty lines are being read. 

Workloads with write only lines can be categorized into 

two categories: (1) read-intensive and (2) write-intensive. 

The majority of the cache lines for read intensive workloads 

are clean lines. The write intensive workloads produce a 

large number of writes. Writes are often requested by 

subsequent reads while the cache lines are still residing in 

the L1 cache. After eviction from the L1 cache, however, 

dirty cache lines are rarely reused. Not all dirty lines are 

write-only lines, thus making it hard to solve the problem of 

write-only lines by not allocating write lines in cache. 

Different workloads exhibit different types of behavior based 

on different mixes of write-only, dirty-read, and clean lines. 

A much more sophisticated approach (which can identify 

write-only lines, or favor one type of access over another 

based on the likelihood of future reads) is required to 

improve performance across multiple workloads [23]. 

2) Example of the Need for RWP 

To understand the benefits of read write partitioning, 

consider the example shown in Figure 38: Figure 38(a) 

shows a loop with a burst of memory references occurring at 

four different points in the execution of a loop. Out of the six 

(6) cache lines, “B” is read and written to and “C” is only 

written to. Using a LRU replacement algorithm for a fully 

associative cache with a total of 4 lines, at the end every 

iteration “D” gets evicted and the intermittent access to “B” 

and “D” causes three (3) stalls for each iteration. Figure 

38(c) shows the timeline for one iteration with read-biased 

policy and Figure 38(d) shows the timeline for one iteration 

with write-biased policy. From this example it can be seen 

that differentiating between reads and writes in the cache 

improves execution time. While simple approaches as used 

in this example show improvement, the method could cause 

unwanted effects in performance in other areas [23]. 

3)  Read Write Partitioning Framework 

The objective is to maximize the number of read hits in 

the cache so that critical read requests can be executed 

without stalls. To achieve this, cache lines that are probable 

to be used as read lines are identified. Most applications have 

more read lines as compared to write lines. For example, 

benchmark 483.xalancbmk has more reads in clean lines 

than dirty lines. Each cache set can be logically divided into 

two partitions for clean and dirty lines. The per line dirty 

status bit is used to determine if the line is part of the read 

partition or write partition. When writing to a clean line, the 

dirty bit is set and it is logically considered to be part of the 

write partition. 

With respect to partition size, the partition size is not 

monitored continuously. The partition sizes are adjusted 

when a new cache line is allocated. When a new cache line is 

allocated, the system has to decide which cache line to evict.  

The decision on which line to evict is decided based on the 

current number of dirty lines. There are three cases that 

determine which line gets evicted. 

• The current number of dirty lines is greater than the 

predicted best dirty partition set. In this case the 

least recently used line in the dirty partition is 

picked by the RWP algorithm. 
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Figure 39: Speedup over Baseline LRU [23] 

• The current number of dirty lines is smaller than the 

predicted best dirty partition set. In this case the 

least recently used line in the clean partition is 

picked by the RWP algorithm. 

• The current number of dirty lines is equal to the 

predicted best dirty partition set. In this case the 

selection of the evicted line (a “victim” line) 

depends on the memory access type. If it is a read, 

then the RWP algorithm picks the victim line from 

the clean partition. If it is a write, then the line to 

evict is selected from the dirty partition. 

RWP checks partition sizes only when clean cache lines 

are written to. To estimate partition sizes, RWP compares the 

read reuse exhibited by the clean and dirty lines as if each 

were given exclusive access to the entire cache. RWP uses 

the same mechanisms proposed by M. Qureshi et al. in 

“Utility-based cache partitioning: A low-overhead, high-

performance, runtime mechanism to partition shared 

caches”[28].  To summarize: the RWP is confined only to 

the last-level cache. The RWP does not attempt to identify 

de-prioritized write-only cache lines.  The write-only cache 

lines are evicted by changing the clean and dirty partition 

size [23]. 

4) Read Reference Predictor (RRP) 

The abovementioned paper by Kahn, et. al. [23] further 

proposes an additional mechanism called Read Reference 

Predictor (RRP). RRP is used to differentiate between cache 

lines which are susceptible to further reuse versus cache lines 

that are not probable to be used again. This categorization is 

performed based on the likelihood of being reused. This is 

achieved by using the program counter (PC) of the memory 

instruction with an emphasis on identifying reuse by 

subsequent reads and not to predict general reuse by all 

memory instructions. The reason for focusing on only reads 

lines is because read misses are more critical as compared to 

write misses. This method bypasses any cache lines that are 

likely to only be written to [23]. 

The frame work of RRP is similar to that of RWP as 

discussed above. RRP also uses a shadow directory added to 

sample sets to measure the amount of read reuse. The 

shadow directory has a cache line tag which shows the 

amount of read reuse and a hashed PC value of the 

instruction which is allocated to the cache line. Figure 40 

shows how the locality is tracked in an 8-way set associative 

cache. 

 

Figure 40: Sample sets in Read-Reference Predictor [23] 

Turning to Figure 40 by way of example: the first 

instruction “A” writes to data address 0x8000. The initial 

write allocates an entry for cache line 0x8000 in the shadow 

directory with the critical bit initially set to 0. “D” also reads 

to the same cache line 0x8000. In this example, the critical 

bit for 0x8000 is set because it is reused. It can be seen that 

address 0x3000 is first read by instruction “C” and then 

subsequently written to by instruction “E”. However, the 

critical bit is not set because RRP only focuses on read reuse. 

The most important advantage of RRP over RWP is that it 

explicitly classifies memory requests as exhibiting read and 

write reuse. However, implementation of RRP is much more 

complex: the most significant complication presented by 

RRP is that write back requests are not associated with any 

program counter (PC). The PC recorded for L1 has to be 

passed to L2 and then to LLC when the line is written back 

from L1 and L2. To do this, the RRP solution requires 

additional storage and logic complexity in the core cache to 

store and update the hashed-PC value with the cache line 

tags [23].  

5)  Evaluation Methodology and Performance Analysis 

To evaluate the RRP and RWP methods, both are 

compared to prior solutions including: Dynamic Insertion 

Policy (DIP), Re-Reference Interval Predictor (RRIP), and 

Single-Use Predictor (SUP). All of these solutions do not 
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take the read write criticality into account. The results shown 

in Figure 39 are based on the evaluation methods, 

simulations, and assumptions as noted in Section 5 of the 

paper by Kahn et al. [23].  Figure 39 shows the speedup for 

the cache sensitive workloads for a variety of replacement 

algorithms as compared to a baseline cache with LRU. It can 

be seen that on average, RRP improves performance by 

17.6% and RWP improves performance by 14.6%. The 

worst performance is for 571.omnetpp because of a sampling 

errors. For memory-intensive workloads, RRP achieves 

7.9%, 7.4% and 5% performance gains over DIP, RRIP, and 

SUP+, respectively. For memory-intensive workloads, RWP 

delivers speedups of 6.8%, 6.3% and 3.9% over DIP, RRIP, 

and SUP+, respectively [23]. 

Figure 41 shows LLC memory load misses normalized to 

an LRU baseline for various benchmarks. As shown in 

Figure 41, the RRP and RWP techniques reduce load misses 

by 30% and 29% respectively when compared to the 

baseline. The reduction of load misses can also be noticed 

when compared to the other configurations which do not 

take the read write criticality into account [23]. 

 

Figure 41: Load Traffic over Baseline LRU [23] 

The key contribution of the Kahn et al. paper [23] is the 

manner in which read and write lines are processed (e.g., a 

process which favors read lines). This technique provides an 

improvement of speed-up and also reduces load misses. 

Overall, this method improves the performance of the cache 

memory. While Kahn et al, introduces marked 

improvements, there are a few drawbacks which were not 

addressed in the Kahn et al paper.  For example, the method 

taught by Kahn et al. does not address multi-threaded 

workloads that share LLC lines [23]. 

C. Removing Cliffs from Overall Cache Performance 

At times, LLC (Last Level Cache) suffers significant 

performance degradation (e.g., “cliffs”) when there are only 

minor changes in program behavior or changes in the 

available cache space.  Such minor changes results in large 

changes in the miss rate. To expand, performance cliffs are 

thresholds where performance suddenly changes as data tries 

to fit into the cache. 

Consider the following example to better understand the 

cause and effect of performance cliffs in caches: if an 

application repeatedly scans a 32 MB array, yet the cache is 

less than 32 MB (say 31 MB by way of example), then the 

LRU policy will evict cache lines before the lines are hit. 

However, if the cache is increased from 31 MB to 32 MB, 

there will be a sudden increase in the hit rate. Figure 42 

indicates this type of behavior based on the SPEC CPU 2006 

benchmark workload “libquantum”.  Figure 42 plots Misses 

Per Kilo-Instructions (MPKI) against the cache size and 

plainly shows an LRU performance cliff. There is a sudden 

decrease of MPKI to near zero at a 32 MB cache size. Such 

performance cliffs give rise to the following three problems: 

• Cliffs waste resources and degrade performance. 

The cache space used does not increase 

performance, but increases energy consumption and 

deprives other application of cache space. 

• Cliffs make it difficult to assure Quality of Service 

QoS) by causing unstable and unpredictable 

performance; small fluctuations in effective cache 

capacity result in large swings in performance. 

• Without the convex miss curves, optimal allocation 

becomes an NP- hard problem, therefore cliffs 

make cache management complicated.  

 

Figure 42: Performance of libquantum over cache sizes. LRU 

causes a performance cliff at 32MB. Talus eliminates this cliff [20] 

1) The Talus Example: A Simple Way to Remove Cliffs in 

Cache Performance 

A paper by Beckman et al, entitled “Talus: A Simple 

Way to Remove Cliffs in Cache Performance” [20] produced 

good improvement in the area of cache performance cliffs.  

Talus works by bifurcating the access pattern into two 

partitions. Talus decreases an application’s miss rate in a 

convex fashion by controlling the sizes of the cache 

partitions. Talus works by partitioning an access stream. This 

is achieved by splitting the cache into two hidden shadow 

partitions. The sizes of these partitions are then controlled in 

order to monitor how accesses are distributed between the 

partitions in order to achieve the desired performance. This 

partition configuration is derived from the “miss curves” 

presented by Beckman et al [20].  For example: a miss curve 

is shown in Figure 43. Figure 43 shows a miss curve of LRU 

performance for an application that accesses 2 MB of data at 

random and an additional 3 MB sequentially. 

 

Figure 43: Example miss curve from the application with a cliff at 

5MB. The dotted line shows how Talus smooths this cliff  [20] 
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Figure 44: Performance of various caches for the miss curve in Figure 43 [20] 

At 5 MB, a performance cliff occurs because MPKI 

drops from 12 to 3 MPKI.  With a 2 MB cache, MPKI is 12 

and stays at 12 until about 4 MB; thus there is no benefit 

from increasing the cache size from 2 MB to 4 MB. In this 

example, Talus achieves 6 MPKI at around 5 MB. The LRU 

policy is inefficient at 4 MB, but efficient at 2 MB and 5 

MB. In contrast, Talus makes a part of the cache function as 

a 2 MB cache and the rest like a 5 MB cache. The 4 MB 

cache behaves like a combination of efficient caches and is 

therefore efficient overall.  

How Talus works is further shown in Figure 44. Talus 

traces out the convex hull of the original miss curve. The 

convex hull is the smallest convex shape that contains the 

curve. Figure 44(a) shows the original 2 MB cache, split into 

parts in a 1:2 ratio.  The application accesses the cache at the 

rate of 24 Accesses Per Kilo-Instruction (APKI).  In a hashed 

cache, the accesses are evenly split between sets. The top 

third gets eight (8) APKI and the bottom third gets 16 APKI. 

The misses shown in Figure 43 at 2 MB will also be split by 

the same ratio. Figure 44(b) shows an original cache at 5 MB 

and Figure 44(c) shows how Talus manages a 4 MB cache 

using set portioning. The top part behaves like the top set of 

a 2 MB cache which yields a MPKI of 4, and the bottom sets 

behave like the bottom half of the 5 MB cache yielding a 

MPKI of 2. This results in a total MPKI of 6. It can be seen, 

that this values lies on the hull of the convex curve as shown 

previously in Figure 43 [20].  

 

Figure 45 Talus divides cache space in two partitions of sizes s1 

and s2, with miss rates m1(s1) and m2(s2), respectively. The first 

partition receives a fraction ρ of accesses [20] 

2)  Design and Implementation 

Talus controls a range of parameters.  For an application 

accessing a cache of size “s”, with any replacement policy, 

Talus divides the cache into two shadow partitions of sizes 

“s1” and “s2”. The first partition has a “” fraction of the 

access stream, the other partition has a “1-” fraction as 

further shown in Figure 45. Talus follows the following 

assumptions and rules: 

• Miss curves are stable over time and change slowly 

relative to the reconfiguration interval. 

• For a given access stream, a partition’s miss rate is 

a function of its cache size alone; other factors (e.g., 

associatively) are of secondary importance.  

• Given an application and replacement policy 

yielding miss curve m(s), pseudo-randomly 

sampling a fraction ρ of accesses yields miss curve 

m′(s′):  

𝑚′(𝑠′) =  𝜌𝑚 (
𝑠′

𝜌
) 

• An application and replacement policy has a size 

“s” that is linearly interpolated between any two 

points on the curve, m(α) and m(β), where α ≤ s < 

β.  

𝑚𝑠ℎ𝑎𝑑𝑜𝑤 =  
𝛽 − 𝑠

𝛽 −  𝛼
 𝑚(𝛼) +

𝑠 − 𝛼

𝛽 −  𝛼
 𝑚(𝛽) 

• Given a replacement policy and application 

yielding miss curve m(s), Talus produces a new 

replacement policy that traces the miss curve’s 

convex hull [20].  

Talus uses existing partitioning solutions with few 

extensions both in software and hardware. The 

implementation of Talus is further shown in Figure 46. Talus 

wraps around the systems partitioning algorithm. Talus 

allows the system portioning to safely assume convexity, 

then realizes convex performance, instead of proposing its 

own portioning. Talus generates appropriate shadow 

partition sizes from the partitioning algorithm. All this is 

done in a post-processing step. 

In the hardware implementation, Talus works with 

existing partitioning schemes, either coarse grained or fine-

grained, with the following extensions: 

• Talus doubles the number of partitions in the 

hardware. 

• Talus uses two shadow partitions per logical 

partition. 

• Talus adds one configurable sampling function to 

distribute accesses between shadow partitions [20]. 
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Figure 46 Talus implementation: pre- and post- processing steps 

in software plus simple additions and extensions to existing 

partition schemes in hardware [20] 

3)  Evaluation and Performance analysis 

Talus [20] was previously evaluated in a variety of 

settings to demonstrate the following claims: 

• Talus avoids performance cliffs, and does not rely 

on replacement policies and partitioning schemes.  

• Talus achieves performance competitive with high 

performance policies and avoids pathologies.  

• Talus is both predictable and convex, so simple 

convex optimization improves shared cache 

performance and fairness. 

The results for Talus shown in this section are based on 

the methodologies as shown in the paper by Beckmann et al. 

[20]. To show that Talus follows the first claim stated above, 

Figure 47 shows miss curve performance with LRU for two 

SPEC CPU2006 applications: “libquantum” and “gobmk”. 

Talus was evaluated for three different partition schemes: (1) 

Vantage (Talus+V/LRU), (2) way partitioning 

(Talus+W/LRU), and (3) idealized partitioning on a fully-

associative cache (Talus+I/LRU). In all of the cases, Talus 

proved to be effective in removing performance cliffs. 

To show that Talus with LRU performs well for a single 

program, miss curve performance from 0 MB to 16 MB for 

six (6) SPEC CP2006 benchmark applications are plotted. 

Talus+v/LRU is compared to a number of high performance 

policies: SRRIP, DRRIP and PDP. Figure 48 shows how 

Talus compares to these other policies. From these plots it 

can be seen that Talus avoids the inefficiencies of other LRU 

replacement policies, without sacrificing LRU predictability. 

To prove that Talus simplifies cache management and 

improves performance of LLCs, Talus+v/LRU is evaluated 

on an 8-core CMP (Chip Micro-Processor) with a shared 

LLC. Figure 49 (see next page) shows the weighted and 

harmonic speed-ups as compared to un-partitioned LRU 

policies for 100 random mixes of the 18 most memory 

intensive SPEC CPU2006 applications. Talus+v/LRU, LRU 

and TA-DRRIP are compared along with two partitioning 

algorithms: (1) hill climbing and (2) look-ahead. Hill 

climbing allocates cache capacity in an increasing manner, 

based on which partition would benefit the most from the 

next increase in cache memory space. 

 

Figure 47: Talus on LRU replacement with various hardware 

policies: Vantage (V), Way partitioning (W), and Ideal (I) [20] 

 

Figure 48: Misses per kilo-instruction (MPKI) of Talus (+V/LRU) 

and high-performance replacement policies on representative 

SPEC CPU2006 benchmarks from 128 KB to 16 MB.  [20]  

Look-ahead is a quadratic heuristic that approximates the 

NP-complete solution of the non-convex optimization 

problem. Weighted speedups over LRU are up to 41%/(of 

the geometric mean of) 12.5% for hill climbing on 

Talus+V/LRU, 34%/10.2% for Look-ahead on LRU, 

39%/6.3% for TA-DRRIP, and 16%/3.8% for hill climbing 

on LRU. From these plots it can be seen that the only scheme 

that is competitive with Talus+V/LRU is Look-ahead, an 

expensive heuristic whose alternatives are complex. This 

shows that, by ensuring convexity, Talus makes partitioning 

simple and cheap [20].  
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Figure 49: Weighted and harmonic speedup over LRU of Talus 

(+V/LRU), partitioned LRU (using both Look-ahead and hill 

climbing), and thread-aware DRRIP [20] 

D. Locality - Aware Data Replication in the Last - Level 

Cache 

In the future, multicore processors will process massive 

data with varying degrees of locality. Harnessing on-chip 

data locality to optimize the utilization of cache and network 

resources is of fundamental importance. To achieve this, in 

the paper, “Locality - Aware Data Replication in the Last - 

Level Cache” [22], Kurian et al. proposes a data replication 

protocol for the Last Level Cache (LLC). The goal of the 

protocol is to lower memory access latency and energy by 

replicating only high locality cache lines in the LLC slice of 

the requesting core, while keeping the off-chip miss rate low. 

The utility of data replication at the LLC can be best 

evaluated by measuring cache line reuse. Reuse at the LLC is 

defined as the number of accesses to a cache line by a core 

before the cache line is evicted or before a conflicting access 

by another core occurs. 

 

Figure 50: Distribution of instructions, private data, shared read-

only data, and shared read-write data accesses to the LLC as a 

function of run-length [22] 

Figure 50 shows the distribution of the number of 

accesses to a cache line as a function of run length. In Figure 

50, it can be seen that 90% of the accesses for the application 

BARNES use shared data of a run length greater than or 

equal to 10. As the number of accesses to higher run length 

cache lines increase, it is beneficial to replicate the cache line 

in the requester’s LLC slice.  Nonetheless, if the replication 

is done when there are very few accesses to a higher run 

length line, such a policy would increase the LLC size 

without increasing performance. Therefore, the decision of 

replication should be based on the locality, instead of the 

type of data [22]. 

1) Locality – Aware LLC Data Replication 

The most important components of data replication are: 

• Choosing which cache lines to replicate. 

• Determining where to place a replica. 

• How to maintain coherence for replicas. 

 

Figure 51 provides a better understanding on how the 

locality aware LLC technique works [22]. 

 

Figure 51: Mode transition at taught by Kurian et al. [22]  

Figure 51 shows a transition graph. Initially, all cores 

with respect to all cache lines are initialized to the no-replica 

state, which means that no cache line replica is created at the 

LLC and all requests are serviced directly at the LLC home. 

The home reuse counter for each core tracks the number of 

accesses by that core to the corresponding cache line. If there 

are enough reuses, then a replica is created and that state 

goes to replica state. The number of reuses is determined by 

the replication threshold. If the home reuse counter reaches 

the replication threshold, the core is promoted to replica 

status and a replica is created in the LLC slice corresponding 

to the core. It is easy to see that if the replication threshold is 

high, it is harder to create a replica, and therefore, a lower 

number of replicas are created and vice versa. Once the 

replica is made the replica reuse counter keeps track of the 

number of accesses by the core to the replica location. If the 

replica reuse counter drops below the replication threshold, 

then the replica is evicted and it goes back to no replica state 

[22].  

In Figure 52, the black data blocks are the data blocks 

with high reuse and local LLC replication is allowed.  

 

Figure 52: Mockup requests 1-4 showing the locality-aware LLC 

replication protocol [22]  

These replica service requests are from instructions 1 and 

2. The red data blocks indicate low reuse, and these blocks 

are not allowed to be replicated. The L1 cache miss requests 

from instruction 3 must access the LLC slice at the home 

core. The replication decision is based on the previous cache 

line reuse behavior. 



 

 

24 

 

Figure 53: Completion Time breakdown for the LLC replication schemes evaluated.  [22] 

 

Figure 54: L1 Cache Miss Type breakdowns for the LLC [22] 

2) Performance analysis 

The results shown in this section are based on the 

performance models and metrics described in the paper 

“Locality – Aware Data Replication in the Last – Level 

Cache” [22]. Figure 53 shows the plot of completion times 

for the replication schemes evaluated. The RT-1, RT-3, RT-8 

bars correspond to the locality aware scheme with replication 

thresholds of 1, 3 and 8 respectively.  The completion time 

trends are based on the following factors: 

• The type of data accessed at the LLC (instruction, 

private data, shared read- only data and shared read-

write data). 

• Reuse run-length at the LLC. 

• Working set size of the benchmark. 

Figure 54 shows how L1 cache misses are handled by the 

LLC.  From Figure 54, it can be inferred that the locality 

aware protocol provides better performance than the other 

LLC data management schemes. It is trivial to balance the 

on-chip data locality and off-chip miss rate and overall, a 

replication threshold of 3 achieves the best trade-off. 

Overall, the locality-aware protocol has a 16%, 14%, 13% 

and 21% lower energy and a 4%, 9%, 6% and 13% lower 

completion time as compared to VR, ASR, R-NUCA and S-

NUCA, respectively [22].  

E. Assisted Dead Region Management for Last Level 

Caches 

Last Level Caches (LLCs) bridge the performance miss-

match between the processor and main memory.  LLCs also 

reduce the amount of energy consumed per access. The most 

persistent problem caused in LLCs are dead blocks. Dead 

block are outdated blocks of data that stay in the cache in an 

unused state for a long time until they are evicted.   

Already existing methods to predict dead blocks can be 

broadly classified into dynamic or static methods: 

• The dynamic methods predict dead blocks based on 

the block access history. 

• The static methods predict dead blocks by using 

control flow information to determine future access. 

 

Because LLCs play an important role in reducing overall 

access time (as compared to access time to main memory), it 

is critical to manage LLCs effectively.  The effective 

management of dead blocks within an LLC gives rise to 

significant efficiency improvements in the LLC.  
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1) RADAR (Runtime- Assisted DeAd Region) Management 

for Last Level Caches 

RADAR, as proposed by Manivannan et al. [21] is an 

improved method to manage dead blocks within LLCs. 

RADAR is a hybrid static/dynamic dead block management 

technique that can accurately predict and evict dead blocks. 

RADAR is mainly based on a runtime system that collects 

static region-access information about the programming 

model and dynamic access information from the architecture. 

RADAR uses two orthogonal schemes: (1) look-ahead and 

(2) look-back schemes. Look–ahead schemes look into the 

near future to look for dead blocks. Look-back uses the per– 

region access history to predict how far into the future the 

next region access will occur [21]. 

2) RADAR Framework 

After a task is completed, RADAR’s runtime system 

predicts if the regions that have been accessed by a task are 

dead. If the region is predicted to be dead, the RADAR 

algorithm informs the LLC to demote these blocks to the 

LRU position. Figure 55 shows the overview of RADAR. 

RADAR is an interaction across three layers: (1) a 

programming model layer that conveys static data-

dependency information by providing the regions that are 

used by tasks; (2) a runtime system layer responsible for 

detecting dead regions during execution and (3) an 

architecture layer responsible to provide dynamic feedback 

information about region access and demote the cache blocks 

that belong to dead regions.  

 

Figure 55: Overview of RADAR [21]  

Three schemes can be implemented on top of the 

RADAR framework to accurately predict dead regions, 

namely: (1) a look-ahead scheme, (2) a look-back scheme 

and (3) combined schemes. In the look-ahead scheme, the 

runtime system dynamically constructs a data-flow graph of 

the tasks that are dispatched and are to be executed and those 

waiting for dependency resolution. This graph gives the 

system the ability to observe future tasks and their access 

region. If a region is not accessed by any of the tasks in the 

data-flow graph, then the region is deemed dead. Figure 56 

shows a task dependency graph and Figure 57 shows how 

the runtime system tracks the state of regions using a 

dependency table and performs reference counting. In the 

example shown in Figure 56 and Figure 57, T0 is the first 

task and it does not have any dependencies.  Subsequently, a 

new entry for A00 is allocated in the dependency table and 

the writer field is set to T0. When tasks T1, T2, T3, and T4 

are generated, the runtime system detects a dependency with 

A00 and tasks T1, T2, T3 and T4 are added to the reader list. 

In addition, the new tasks are added to T0’s successor list 

and the reference count of each new task is incremented by 

one as shown in Figure 57. 

 

Figure 56:  Sparse LU dependency graph [21]  

 

Figure 57: Dependency tracking mechanism [21] 

When T0 completes execution, the writer field is cleared 

and the reference count of each of its successors is 

decremented by one. Once a successor’s reference count 

becomes zero, it denotes that all its dependencies have been 

satisfied. The dependent tasks are queued in the ready queue 

for execution. Finally, when tasks T1, T2, T3, and T4 finish 

execution, they are removed from the readers list of A00. 

It should be noted that the look-ahead scheme has two 

limitations. The first limitation is that the scheme does not 

provide temporal information.  In other words, the scheme 

does not provide the information of when the next access to a 

region will occur.  The second limitation is: if a reuse is not 

detected, it does not mean that the block is dead. Instead, this 

could happen if the master thread that generates tasks has not 

populated the look-ahead window fast enough.  

The look-back scheme works on the observation that 

accesses tend to have a repetitive pattern. The scheme 

predicts future accesses using the same methodology as 

branch predictors: (1) classify the current region access as 
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hit/miss (analogous to taken/not taken) and (2) predict 

whether the next access to the region will be a hit/miss based 

on previous accesses to the region. Figure 58 shows the 

working of the look-back scheme on the same example used 

to show the working of the look-ahead scheme. 

 

Figure 58: Overview of Look back Scheme [21]  

The two orthogonal schemes could be combined to 

achieve better performance for the identification of unused 

blocks. There are two approaches for this combination: (1) 

the Aggressively combined look-ahead and look-back 

Scheme (AS) and the Conservatively combined look-ahead 

and look-back Scheme (CS). We define the set, LA (Look-

Ahead) as the set of all the dead regions classified by the 

look-ahead scheme and the set LB (Look-Back) as the set of 

all dead regions classified by the look-back scheme. For CS, 

the set of regions of dead blocks is the combined set of 

regions that belongs to LA ∩ LB, i.e., the intersecting set of 

LA and LB. For AS, the dead region set is the combined set 

of dead block regions that belongs to LA ∪ LB, i.e., the 

union of the sets LA and LB [21].  

3) Performance analysis 

The different schemes used by RADAR to detect dead 

regions were evaluated by Manivannan et al. [21].  Figure 59 

and Figure 60 show the LLC misses for different RADAR 

policies normalized to the LRU baseline scheme and the 

execution time for different RADAR policies normalized to 

the LRU baseline scheme respectively. The look-ahead 

scheme reduces LLC misses for all the applications. It can be 

seen that on average, LA reduces misses in the LLC by 23%. 

From the results, it can be seen that the look-back scheme 

outperforms the LRU scheme for all applications. 

Nonetheless, the look-back scheme does not perform as well 

as the look-ahead scheme. The aggressive combined scheme 

(AS) outperforms all other schemes. The average reduction 

in LLC misses for all applications is more than 26% when 

compared to the LRU baseline scheme. The conservative 

combined scheme (CS) outperforms the look-back scheme 

using the future view of look-ahead. Nonetheless, CS is 

outperformed by the AS [21]. 

RADAR is then compared to other state-of-the-art dead 

block predictors, like the Count-based Dead-Block Predictor 

(CD-BP), Sampling-based Dead Block Predictor (SDBP) 

and Signature-based Hit Predictor (SHiP). The focus of the 

analysis is to measure miss rates, which should decrease as 

dead blocks are replaced in order to improve LLC efficiency.  

The results shown are based on the evaluation methodology 

and metrics shown in the paper “RADAR: Runtime-Assisted 

Dead Region Management for Last-Level Caches” [21].  The 

four different schemes used by RADAR (e.g., RADAR, CD-

BP, SDBP, SHiP) are compared with the baseline LRU 

scheme. 

 

 

Figure 59: LLC misses for different RADAR policies normalized to 

the LRU baseline [21] 

 

Figure 60 Execution time for different RADAR policies normalized 

to the LRU baseline [21] 

 

Figure 61: LLC misses for RADAR and state-of-the-art dynamic 

dead block prediction techniques normalized to the LRU baseline 

[21] 

 

Figure 62: Execution time for RADAR and state-of-the-art 

dynamic dead block prediction techniques normalized to the LRU 

baseline [21] 
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Lastly, Figure 61 and Figure 62 show the comparison 

between RADAR and the other abovementioned dynamic 

dead block predictors (CDBP, SDBP and SHiP). Figure 61 

shows the LLC misses for RADAR and state-of-the-art 

dynamic dead block prediction techniques normalized to the 

LRU baseline scheme. Figure 62 shows the execution time 

for RADAR versus the other state-of-the-art dynamic dead 

block prediction techniques normalized to the LRU baseline 

scheme. While the state-of-the-art techniques reduce the 

number of LLC misses, RADAR is on average at least 10% 

better. The data shows that RADAR is more effective than 

existing techniques at managing dead blocks. From the 

results it can be seen that RADAR performs better than other 

dead block LLC management techniques overall [21]. 

4 Conclusion and Future Work 

As discussed above in this paper, many encouraging 

improvements in cache memory architecture performance 

have been identified and fully tested.  For the most part, 

cache memory system performance testing has been done via 

simulations, without the benefit of seeing such 

improvements being truly implemented in real-world high-

performance computer architectures. As discussed in the 

case study below, while it can take many years to get cache 

memory architecture research out of the lab and 

implemented into silicon, once implemented, the benefits of 

such research can and do make a dramatic impact. 

Indeed, as shown for the Intel Xeon Haswell multi-core 

architecture (see “A Case Study – From Concept to 

Reality”), while the road from research to reality is long, the 

benefits are great. While strides in cache memory 

architectures continue, multi-core processor performance 

still outflanks cache memory performance, leaving 

seemingly limitless areas of research to be explored in the 

future.  Compounding the gap between cache memory 

performance and multicore processor performance is the fact 

that individual cache memories associated with each 

processor core must at some point be mapped to a single 

shared memory, thus causing a bandwidth bottleneck.  With 

zetta-flop (e.g., 1021) performance computing systems 

projected by 2020, a continuum of new breakthroughs for 

cache memory designs are required [25]. 

Just one area ripe for additional research appears to be in 

the area of optical cache memories. Optical cache memories 

offer the ability for the memory speed to keep up with the 

ever increasing data bandwidth requirements presented by 

future multi-core processor systems. Figure 64 shows an 

envisioned multicore to optical cache memory architecture 

using an optical-to-digital interface. Encouragingly, 

simulation results have shown a 40% improvement in cache 

memory access speed at a clock rate of 16 GHz [25]. 

 

 

 

 

 

A Case Study - From Concept to Reality [24] 

 

As far back as the mid 2000s, researchers envisioned techniques to significantly improved multi-core processor system 

architectures by employing breakthroughs in a research area called “Quality of Service (QoS)”. QoS relates to reducing 

shared cache memory contention while co-running applications. Specifically, based on simulations, a few researchers 

identified two (2) new QoS prospective research areas to improve multi-core processor system architectures: (1) Cache 

Monitoring Technology (CMT), and (2) Cache Allocation Technology (CAT). 

 

During the research phase, CMT technology promised improvements by intelligently monitoring how shared cache 

memory was actually used by a given workload. Separately, CAT technology offered enforcement of how much a given 

workload was allowed to use shared cache resources. Combined, CMT and CAT was envisioned to provide solid 

improvements. 

 

 

Figure 63 - Overview of CMT (Left) and CAT (Right) [24] 

 

While CMT and CAT technology was seen by researchers to be promising, it took 10 years before such research was able 

to be applied in practice [24]. On June 4, 2013, Intel introduced the Xeon “Haswell” 4th generation processor employing both 

CMT and CAT technologies [24][29]. 

 

The evaluation of the CMT and CAT technologies incorporated in the Intel Xeon Haswell chip was proven to provide 

improvements as high as 450% without a single case of inferior performance over a wide spectrum of tested workloads [24]. 
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Figure 64 – Overview of (a) present day cache memory 

architecture versus (b) optical cache memory architecture [25] 

 

Researchers will no doubt continue to rise to the challenge 

of bridging the gap between processor system performance 

and cache memory system performance as they have for 

nearly 40 years. 
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