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Abstrac In computer systems, the cache memory
architecture has a significant impact on both system
performance and system cost. Further, the gap between
processor performance and cache memorperformance
is widening at the disadvantage ofthe overall system
performance. In this paper, we explore the important
aspects that impact cache memory architecture
performance and cost, including: (1) An overview of
present stateof-the-art cache memory achitectures. (2)
We examine the latest advances in cache controllers and
energy management(3) We explore important aspects of
cache memory organization, including cache mapping,
spatial cache and temporal cache techniqueg4) We
provide an analysis of performance of stateof-the-art
cache memory architecture implementations including
new promising memory technologies.(5) We end by
considering future research areas that may prove
promising in narrowing the performance gap between
cache memory performane and processor performance.
Overall, improvements in cache memory architectures
stand to make a significant impact in unlocking major
improvements in  high  performance computer
architectures.

Keyword$® cache memory architecture; cache data mapping;
prefetching; lowpower cache; cache coherency

I.  INTRODUCTION

Modern highperformance computer architectyrasich
as the one shown fRigure 1, would not exist withoutache
memories Nonethelesssince the first implementations of
cache memoriesthe imbalancebetween theprocessor
system performance andhe cache memory system
performance has had a detrimental impacttloe overall
system performancd2]. Amazingly, the gap between
processor system performance and cache system
performance was recognizedearly as the 197(8].

Figure 1: Photograph of Intel Xeon processor 7500 series die
showing cache memories (centfr)

Unfortunately suboptimal cache system performance
still remains as one of the largest limiting facttr®ptimal
system performance g up to present timedo put this
into prospective, some facthat have beemecognized for
over 30 yearinclude[3]:

1) It has been estimated that as processor gate counts
continue to inevitably increas&o be precisefor every
10-fold increase in transistor gate count, the required
memory bandwidth demand increases byfda.

2) The small cache memories within a processor make up
a larger cost impact, by percentage, than the larger
external memories.

3) From the onset ofache memories in the 1970s, it has
been estimated that the requirkdndwidthto supply
the core processa with instructions and data exceeds
the ability of the cache memory to supply the needed
bandwidth by a factor of 300%.

Further,it is estimated thag0% of power consumption in
advanced computer architectures is a direct result of how
efficient (or inefficient) the cache memosystemperforms
[4][5][6]. Thus since the introduction of cache memory
architectures, researchers have continue tstruggle with
the very same topics of cache coherefid§8][9], write-
through versus writback [10] and optimal cache size
[3][11][12]. To address the abawentioned limitations,
consistent topics that searchershave heavily researched
and continue to research, include the following af&3k

1) Cache memory access prediction improvements related
to spatial memonraccesge.g., locality of data accesses
by address) and temmdmemory accesge.g., locality
of data accesses in time).

2) Optimization of cache memorgssociativityto main
memory. In other words, finding the optimal methods
to map cache memory to main memory.

3) The development of intelligent software compilers to
attempt to improve cache accesbased on prediction
(e.g., determimg via software compilershow likely
certain memory addresses will be accessed).

4) Improvements in the mapping of L1 cachemory
contents to that of L2 cacmemorycontents.

5) Advancementin the performance of mapping cache
memory to main memory via the TLB (Translation
Lookaside Buffer).

6) Hardware prefetching enhancements to better supply
optimal memory prefetcher performance.

Il.  OBJECTIVES ANDCONTRIBUTIONS

The objective of this paper is take the reader to the
forefront of the battle to improve the imbalance between
processor system performance and cache system


mailto:kramerri@oregonstate.edu
mailto:elmlingm@oregonstate.edu
mailto:abhisher@oregonstate.edu
mailto:timmires@oregonstate.edu

performance. Specifically, we fociis a number of core
areas that are further discussed below.

In Section 3i A Ad v a n c e s DataMan&gemehte
Prefetching, Bandwidth Management, Scheduling, and Data
Pl a c e,we pointdto the most recent research related to
improving how cache memory is useWe include a review
of novel advancements cache prefetching, improvements
in cachememorybandwidth utilization, and optimizatisiof
data placement within the cache memory system
[14][15][16][17]. Given the fact that cache memory to
processor system bandwidth is a major bottleneck, we point
to new research tatilize valuablebandwidthresources in
the absolute most efficient manner.

1) As an example, we review promising techniques to
efficiently! learn and intelligently associate amagr of
different types of prefetcher® the software that is

future (e.g., dead blocksyo thatthe unused cache
content can be replaced by relevant content, thus
reducing wasted cache energy by 2[{2%.

In Section6i i Co n ¢ |, wessunomarize our findings
and provide a case study of taking cache memory
architecture reseenthtyoomi
Xeon Haswell processof24]. We also consider new
frontiers for future work includingptical cache memory
architecture$25].
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. ADVANCES IN CACHE DATA MANAGEMENT:
PREFETCHING BANDWIDTH MANAGEMENT,
SCHEDULING AND DATA PLACEMENT

Advances in cache data management techniques affer
wide range of exciting opportunities to improve overall
cache memory system performanda. this section, we

being executed (e.g., selecting the best prefetcher based discuss advances related to cache datanagement

on the application(s) being run). Based on this
technique, the solution offers a worst case% .o
18.7% improvement over the best present day
techniques, while at the same time, using less memory
and logic overheafl4].

2) As yet another examplbased onntelligent thread and
data placement schemewge point to researchhat
provides a46% increase incache memory system
performance as compared to present day NUCA {Non
Uniform Cache Architecture$}5].

In Sectiond T fiLeadingEdge Hardware Implementations
and Opportunitiey we point to modern day challenges and
potential breakthroughs related to the considerable impact
that cache memories have on systeawer requirements,
access speed, fault tolerance and relialjdit{b][6][18].

1) We are intrigued and examine advances that have
allowed low power battery operated devices to employ

cache based systems. Such advances offer significantly

low power consumption, et provide superior cache
performancd4][5].
2) We further evaluate and providmsight into new

including:

1 Advancedprefetching that empl®a unique way to
monitor and then select the optimal prefetcher.

1 Bandwidth management technigques based on the
prediction of bandwidth requirements for multiple
threads of software running on multipbeocessor
COres.

Cache data schedulinghat createsvirtual cache
memories that transcend across multiple threaded
applications and even multiple processors.

1 Unigue cahe data placement management
techniques entailing algorithms and architectures
used to determine here to store data in relation to
SRAM and STTRAM (SpinTransfer Torque
RAM).

A. Advanced Prefetchin

Cache Prefetching is a Technique used in modern day
compute processors to improve the execution speed by
prefetching instructions/data from main memory and
suppying the instructions to cache memory. Modern day

opportunities to speed up cache memory accesses by as computer processors use high speed cache memory, whereas

much as 11.3% (and ancouragind.6% speed umpn
average) when combined with present day NUAT
(Non-Uniform Access Timgmemory[6].

In Section 57 fSpecial Topicsin Cache Memory
Architecturesd, we discuss advances in the overall processor
andcache memory core architer(i19][20][21][22][23].

1) We examinet h e
simulate actual workloads of proprietary programs to
find optimal cache memory architectures that can then
be applied to actual realorld applications. By doing
so0,the processor / cache memory core architecture can
moreeasilybe evaluaté and then optimizefiL9].

2) We point topromising new architectures. For example,
we look to new breakthroughs in processor system stall
avoidance, providing a 6% improvement on -&8ode
processor systefi23].

3) Welook to advancegshat proactively and predicatively
identify cache contents that will not be used in the

1 Efficiency in bothmemory spee and
hardware/logic/computational complexity implementation.

o .dedicated hardware
concept-atedhnigiiectd o n i

fetching of instructions and data for procegsiis much
faster from cache memory as compared to accessing the
same from main memory. There are multiple techniques to
implement cache prefetching, and the techniques are broadly
classified under: (1) hardware based and (2) software based
implementations In hardware based prefetching, there is
that monitors the stream of
indtQidions/data being requested by the program under
execution. The hardware prefetches the next set of
data/instructionsthat the program being executed might
request. Figure 2 is an example of a hardware based
prefetching technique (Stream Buffer) as proposed by
Norman Jouppj26].

In contrast to hardware prefetching, for software based
prefetching, the prefetching mechanism is applied during the
compilation time of the program. Compiler based
prefetching techniques are more widely adopted in the case
of loops that contain a large nber of iterations. At
compilation time, the compiler predicts the future cache
misses and inserts a prefetch instruction based on the miss
penalty and execution time of the instruction.rdugh
compiler based prefetching techniques, run time true data



depandency issues cannot be resolved during compilation
time. In this section, we will discuss the recent trends in
cache prefetching techniques which involves hardware,
software and a combination of both mechasismolved.

Legend

Processor

L1 cache

» Prefetch Request

Prefetched Data

Lower level memory

Figure 2: Streambuffer proposed bylouppi[26] [27]

B. The Sandbox Prefetching Technique

The sandbox prefetching technique is based on the use of
a Bloom filter. The Bloom filter was proposed by Burton
Howard Bloom in 1970. The Bloom filter is a probabilistic
model to test whether a data element is a member of a set. A
query to a Bloom filter
el ement i s present or fAdefi
not present in theet.

I n t h e SandbgxePrefetdhing: Safe Riliime
Evaluation of Aggressive Prefetch@rfugsley et al[14]
preserdg a hardware base technique which provides features
of aggressive prefetching, yet avoids bandwidth and cache
capacity wastage due to aggressive prefetching. The key
feature of the sandbox prefetching techniquéhésreduced
latency overhead in prefetching by usiagBloom Filter
among other methods. The sandbox prefetching technique
uses the concept of globalatpern confirmation and
immediate prefetch action, thereby enabling better execution
performancd14].

L1 Cache

1. Check Sandbox for L1 Miss Address
2, Update candidate score

-1 hliss Addrazs 3. Add candidate PF address to SB

Sandbox Prefetch | _

L2 Cache Unit

Sandbox

i I
_ Issue real

I prefelches after L2 check

Main Memory

Figure 3: Figure showing andboxprefetcherarchitecture[14]

Figure 3 shows the placement tfe sandbox unit within
the memoryhierarchy. As shown irfrigure 3, the sandbox
uni t dngpacsk norinél cache actions. The sandbox
prefetch mechanism proposed by Pugsley efldl] has a

ni
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separate sandbox prefetch unit and a sandbox uh&. T
sandbox technique begins by monitoring multiple prefetcher
algorithms, seeking to find the most effective prefetcher
algorithm. The sandbox unit keeps the score (hits versus
misses) of candidate prefetchebsised on the outcome of
individual cache ling beinga hit or a miss. Each time there

is a cache access, the correspondingfetchercandidate
score is incremented based on a Bihce the score of a
candidate prefetcher crosses a threshold, the prefetch
mechanism control is taken over by sandbox prefetch unit.
Figure4 shows the sandbox prefetching actions for each L2
access[14]. Sandbox prefetching maintains a set of 16
candidate prefetchers and each candidate is evaluated in a
roundrobin fashior{14].

L2 Access

Real Memory Hierarchy Sandboxed Environment

g L] . Y 3
Check Scores of Check Sandbox for| Hit? | Increment
Evaluated Candidates| L2 Access Address Candidate Scora

; L] ) . A
Issue Real Prefetches of Add Candidate Prefetch
High Scoring Candidates o Sandbox

el
Figure 5 (see next pageyhows the performance of

SandBox Prefetching (SBP), normalized to apnefetch
baseline. The sandbox technique is compared with No
Prefetching (No PF), Feedback Directed Prefetching (FDP)
and Address Map Pattern Matching (AMPM3andbox
prefetching provids better performance when compared to
the other prefetching mechanisfid].

C. Bandwidth Shifting

Current modern day microprocessors have multiple cores
and run multiple threads concurrently. Novel techniques
have been proposed,ttvthe idea of dynamically assigning
needed bandwidth to applications based on the prefetch
efficiency of each thread.

Increased in Multicore System Efficiency Through Intelligent
Bandwidth Shifting

Jimnez et al[16] introdues a technique that increases
multicore system efficiency through intelligent bandwidth
shifting. Data prefetching hides memory access latency, but
not all of the prefetched data is accurately fetched, thus
reducing the performance of the system. The rtieghe
employed by Jimnez et al. provides an efficient software
mechanism for dynamically assigning memory bandwidth
for each thread, based on fredicted prefetch efficiency.

The technique assures backward compatibjliy]. The
techniqueurtherprovidesthe following characteristics:

1 Prefetch based bandwidth shifting to characterize
performance.

Metrics to estimate prefetch usefulness.

Novel bandwidth shifting meemisms to increase
performance.

1 Evaluation of bandwidth #fting.
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Figure 5: Performancenormalizedto no-prefetch baselingl4]

To expand, Figure 7 shows the throughput and
bandwidth consumption of a subset of benchmarks defined
in the SPEC CPU2006 benchmasdpecification Figure 7,
indicates Deep, Shallow and OFF regions. In the Deep
region, the prefetcher uses the longest distance available for
prefetching. The Shallowegion uses the shortest distance
for prefetching. Lastly, the OFF region refers to the
prefetching action being turned offigure? clearly indicates
that when more than 16 threads are being used, the
bandwidth usage and performance saturates. All of the
performance benchmarks are evaluated on an IBM POWER7
machine. Jimnez et dlL6] states that the benchmassults
are ot exclusive to thdBM POWER7 machineused by
Jimnez et al The efficiency of prefetching applications
varies depending on the memory access pattern thed
availability of bandwidth. Jimnez et 4lL6] also states that
there were no severe impacts observed when changing to
aggressive prefetch actions. The proposed technique of
bandwidth shifting uses only DEEP and OFF settings for the
prefetching mechanisfi6].

The bandwidth shifting algorithmrgposed by Jimnez et
al.[16] uses an iterative approach. Initially the configuration
is set tothe most aggressive prefetch setting. Next, the
algorithm computes the usefulness of prefeigh an
instruction for each thread and tabulates the result. The

evaluation of prefetch usefulness is done by frequently
turning on and off the prefetching for each thread and then
measuring the Instruction Per Cycle (IPC) and bandwidth
usage under both the omdaoff configurations.Figure 6
shows the base implementation of the algorifhj.

The base algorithm shown iRigure 6 introduces a
problem:thereis a lack of hardware resources while high
Prefetch Usefulness (PU) threads are running on the system
due to the limited number of prefetch streams tizat be
allocated. To overcome this problem, as showRigure8,
Jimenez et al[16] introduced a modified base algorith
which increases performance by 33% when compared to the
performance of the algorithm shownkigure6 [16].

Turn off
prefetch for
lowest-PU
thread

Reset prefetch
settings

Compute PU
for each thread

Wait for next
phase

Figure 6: BasebandwidthShiftingalgorithm[16]
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Figure 8: Modified basealgorithm [16]
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In the modified algorithm shown iRigure 8, the initial
mechanism is the same as that of the base algorithm as
shown inFigure 6. A number of dditional steg are also
added as follows:

1 Step 1:Measuring system performance by turning
fof fo the prefetching
Step 2:Testing if there was a positive impact on the

system when the prefetch mechanism is turned

fof fdo for a given thread.
Stp3:1 f there was
prefetching for a given thread, a decision to turn
fono or fAoffod the
will be considered again in the next iteration.

Figure 9 illustrates the positive effect of the bandwidth
shifting algorithm on system performandggure 9 plots a
function of the prefetch
we assign the value fAzo to t
instances running) and the prefetch unfriendly algorithm
iomnepd (which we assign the
simultaneous thread instances running) as benchmarks.
Specifically, Figure 9 shows the amount ofpsedup for 32

1

processes running simultaneously, with the-axis
representing the number of u
simultaneous thread instance

the number off ri endl y al gorithm #db

thread instancesirn ni ng (,kz$3932[16]. Thus

Harmonic Speedup

I T T T I I T
4 8 12 16 20 24 28

Number of omnetpp threads

Figure 9: Effect on bandwidth shifting @ystenperformance with
prefetch efficientliwave$ and inefficient (omnetpp) threafis]

D. Scaling Cache Hierarchies Through Computation and
Data CoScheduling

Today, NonUniform Cache Architecture (NUCA) is the
most widely used method to extract improved performance

prefetch

frighelY, &l

from cache memory systems. Advanced techniques of
NUCA include: (1) Reactive NonUniform Cache
Architecture (RNUCA) and (2) Static No#tuniform Cache
Architecture (SNUCA). Recently, better techniques that
further improve RNUCA and SNUCA have been proposed.
Such improvements provide better cache memory
management and improvedehd scheduling to derive better
system performance. One such technique is referred to
Computation and Data €8cheduling (CDCS]15].

Computation and Data G8cheduling technique (CDCS)
One example of cache memory schedulsdisclosed in

the paper iScaling Distribut
Computation and Data €@c hedul i ngo by Be
[15]. Beckman et al. proposed a technique called

Computation and Data €8cheduling (CDCS), a tecluie

that relates to the placement of threads and data using
distributed shared caches in a multiprocessor environment.
The main contributionthe Beckman et al[15] paper are as

f orfollews:t hr ead.

1 A novel thread and data placement sobethat
considers both data and access intensity by threads
across multiprocessor tiles.

i mprovemeng AR ¥nhahcddd dedigh & a §bdnfeti®sampling curve

monitorsthat scales withiavery large NUCA.

T ﬁaFd\'Na(?enthat'c efidbles Ancrénlentat l%corjifigﬁhlratﬁ)r"?1 d
of NUCA caches.

The CDCS technique then tags data to the virtual cache
us i r t u(s). Foraeydnyel2 IBvielcacloe
i H&fthla_mvﬁ?"(’%/‘{‘ﬁ%aﬁwrt
frere T BHHR fline Pebides h WY ém%r? guBsk}s?em.tAh :
Virtual Translatign Buffer, refeer.d, t o a sas showim VT B
inVFfE]LLreulS, stdes Ghe Eoﬂfigl}raﬂoﬁ fof! aHI'\% usil rcacf?ef
memory groups that a given executing thread can access.
Virtual cache configurations are periodically changed by

CDCS softwar% (every ijs)hanﬂinrﬁ Hoth the bank and
fiitlorl &5 Gk the fi urﬂwg S:; tirhe'' Blsed! j’h RoWwahed P
i adcedded! k5y M e éjjﬁh reafls® A Bioc dfaﬂrﬁrr‘i o ©
& Mt cachb i@ cortfiguit Fsflotr? inFigure10.
Example LLC Access
Tile 3
CDCS LLC Bank 3
© uc i
Update part 5 counters () Serve
Add core 0 sharer %{___.E;(—:—-——-;:\g line
L2 Miss = CDCS LLC -
lockup, bank 3, |3|5 GETS | 0x5CA1ABIE |
bank partition 5
VTB
©) L1D Miss 2 12 and [;] |_T 2 |
VTB lookup | +|.|D :| | L1D |
€@ 1D 0x5CAIABIE [OE " core 0 |

Tile O

Figure 10: An example of LLC access using CDCS [15]
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Figure 11: CDCSimplementationvith 64 tile CMP [15]

Figure 11 shows the hardware black box hardware
implementation of CDCS. Each tile has a core and a slice of
Last Level Cache (LLC). An oeohip network topology
establishes connection between a tile and the memory
controllers that reside at the edges.

CDCS is basedon NUCA methodology and allows
software to divide each cache bank into multiple partitions.
Collections of portioned caches are grouped and are made
visible to software threads as a single cadie grouping of
the caches provides the software with fléikip to define
multiple virtual caches and to configure them into different
sizes of virtual cache memory [15].

Figure 12 shows the thread and datagement under R
NUCA techniques, where thread private data is stored for
threads in the proceRgareX3ds
shows how the threadnd data is placed using the CDCS
technique provids a 400%higher speedip over the R
NUCA techniqud15].

Legend Tile (1 core+LLC bank) —
Thread running on ccre__—_m
LLC data breakdown

Threads ©1 ©2 O3 ©O4 O5

06
e owe MDD EDE
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11 {ilbdc) thread
Data from O1 and O2

Threads M1 M2

mile o I

M14

. Threads Il x &8 12 x &
ilbde v 7

[
M11{M12[FM13]| M14!

Figure 122 R-NUCAworkloadorganization schemes on 36 tile
CMP [15]

CDCS software provides different levels of virtual
caches. During execution, each thread is provided with a
thread private cache at the @&el. Common data between
the threads of the same process are placed [pnoces
private cache, and common data between the processes are
placed ina global virtual cache. Based on these techniques,
faster access to data is provided and cache pollution is

6

reduced. The CDCS technique provides a 46% increase in
performance when compad other NUCA techniques, and
provides 36%betterenergy efficiency when compared teo S
NUCA [15].
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Figure 13: CDCSworkloadorganization schemes on 36 tile CMP
(15]

E. Adaptive Placement Policies for Data in Cache Memory
Systems

Another leading area of research is the intelligent
placement of cache memory contents in differing types of
memory withincachememorysystems and main memory
For examplea hybrid of cache memosystem consisting of
DRAM, SRAM and even ST-RAM.

An Adaptive Placement and Migration Policy for an STT
RAM Based Hybrid Cache System

One such paper thatonsiders newdata placement
polices for datdlocksin cache memory systenisthe paper
flAdaptive Placement and Migration Policy for an STT
RAM-Based Hybrid Caclte Wbvgng et al[17]. \Wang et
al. [17] proposes anAdaptive block Placement and
Migration policy (APM) forhybrid caches. The technique
proposed by Wang et al. places the block in either-STT
RAM (Spin-Transfer Torqué RAM) or SRAM, based on
an adaptive placement and migration policy algorithm. The
technique proposed by Wang et al. combines the advantages
of low leakage power and high packing density offered by
STT-RAM with the low write overhead of SRAL7].

To expand, Wang et atategorize LLC cache accesses
into three distinct classes: (1) ceseite, (2) prefetchwrite
and (3)demandwrite. Turning to (1)- corewrite, a core-
write is a write from the core to the LLC. For a write through
core cache, a congrite entails directly writing from the core



through to the LLC. For a writback core cache, a cere
write entails evictingdirty data from the core cache and a
write back to the LLC. For {2- prefetchwrite, a prefetch
write is a write replacement of the block from LLC caused
by a prefetch miss. For (3)demandwrite, a demandvrite

is a write block replacement from LLC cd by a demand
miss. The technique proposed by Wang ef1al] is based
on block replacement if the request is initiated write
access.Wang et al.[17] introducesan ntelligent block
placement policy as follows

1 SRAM should be used for the majority of the write
actions thus avoiding write overhead involved in
STT-RAM.

Frequently used blocks should be placed in LLC to
achieve reduced memory access latency, reduced
overhead, and less mplexity within the overall
design.

Block placement is often initiated by a write access
to the LLC which Wang et al. further
subcategorizes to be either a (1) prefetche, (2)
corewrite or (3) demand write as discussed above
[17].

mm Demand-write = Core-write == Prefetch-write
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Figure 14: Distribution of LLC write accesseBachtype of write

access accounts for a significant fraction of total write accesses
[17]

Figure 14 shows the breakdown of block placement for
(1) corewrite, (2) prefetchwrite and (3) demandrite to the
LLC. Wang et al[17] further teaches two types of rasge
(1) readrange and (2) depttange, which is further
described as follows:

1 ReadRange: The reathnge is a property of a

cache block that fills the LLC by a demawite or
prefetchwrite request. It is the largest interval
between consecutive reads the block from the
time it is placed into the LLC until the time it is
evicted[17].

Depthrange: The depthange is a property of a
corewrite access. It is the largest interval between
accesses to the block from the curreoteevrite
access until the next coverite access to the same

bl ock. The fAdeptho refer
descends into the LRU stack before it is accessed
again[17].

In Figure 15, iRad r eBeaads emlt®sc kt hie
AWaodo reprWsieanrt shltohcek fAao. The
successive block reardangiesd rs
discussed above. The distance betwaevrite access to that
of reading the same <dahgeodse
di scussed ab s®andrepredstasoan evigtada |
block from cache, e.g., the least used data from cache is
kicked out from the cache memory. Readge/depthiange
is further classified as followd.7]:

1 Zeroread/depthrange: Data is filled into the LLC
by a prefetch or demand request/canréie request,
and it is never read/written to again before it is
evicted.

Immediateread/deptfrange: The read/depttange
il o (which is further
parameter imo, wher e
SRAM ways in the STIRAM/SRAM hybrid cache
configuration).

Distantread/deptirange: The read/deptange is
larger than m = 2 and at mo#te associatively of
the cache set which is 16 in SRAM/SRAM
configuration.

S
m =

DR of the first Wo: 2
Ra, Ra, Rb, Rc, Rd, Ra, Wa, Rc, Ra, Wa, Rf, Rb, Rc, Rd, Re, Rm, Rn, Rs

RR of block a: 4 DR of the second Wa: 0

Figure 15: Exampleillustrating read-range and deptinange[17]

The technique proposed by Wang et [4lf] uses the
readrange to analyze the access patterns of LE@ure16
shows each access pattern and each category is further
classifed based omeadrange/deptirange A summary of
the resultsareas follows:

1 Zeroread/deptirange corresponds to 26% of all
prefetches on average. For prefetatites, because
the category is never used until a miss occurs and
then a block is evicted frormache, the prefetched
block should be placed in SRAM as to avoid the
write overhead of ST'RAM.

Immediatereadrange corresponds to 56.9% on
average. The data associated with this category
should likewise be placed in SRAM to provide fast
access for immediate use. Using SRAM for this
category mitigates STFRAM involvement in
eviction once the cachédek is dead.

Distantread corresponds to 17.5% on average. For
this category, data should be placed in SRAM

to make use of large capacity to avoid cache misses.

In the proposed design by Wang et falt corewrite
access misses, the data is directly written back to the main
memory. Zerereadrange blocks should be bypassed from
cache because the data will not be used except for eviction
ffom cdhe b8 WeaddfolkP Thds,hb‘}pasgirﬁg Oz8elhd
range blocks Wl reduce the write operations to LLC.
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Figure 17: Flow chart of he adaptive block placeent andmigrationmechanisngerrors as shown in the originall 7]

Figure 17 shows the flow chart of the proposed design.
Each block is associated with a prediction bit indicating
whether the block is dead. On a cache miss the prefittch
data is placed intdthe SRAM; and the prediction bit that
predicts if the block is dead is set to 1 (e.g., it is assumed
dead on arrival). An access bit pattern predictor, predicts
whether the block in SRAM is dead. The proposed scheme
reduces the overhead of SRAM by using thefollowing
scheme$17]:

1 By bypassing dead on arrival blocks.

1 By introducing an SRAM line filter to filter write
operations caused by inaccurate and immediate
readrange prefetch request

1 By placing frequently used cowerite blocks in

SRAM.

The access pattern predictor makes a prediction in the
following three conditions: (lWhena corewrite requests a
hit within the STFRAM lines, the write burst prediction
table will be accessed to predict whether it is a write burst
request(2) for each read hit requesithin the SRAM lines,
the dead block prediction table will be accessed to predict
whether it is a dead blogK3) on a demanéwrite requestthe

dead block prediction table will be accessed to predict
whetherthe requesis a deaebn-arrival block reques{17].

Overall, the block placement technique proposed
achieves higher performance by placing distaarange
blocks in STFRAM and by bypassing the zereadrange
cache lines in order tovaid write overhead; SRAM
provides better efficiency in evicting inaccurately fetched
data blocks.

V. LEADING-EDGE HARDWARE IMPLEMENTATIONS

AND OPPORTUNITIES

Given the stedly growing market fo batterypowered
devices(e.g., mobile phones or wireless embeddsensor
networked devices)energy efficiencyhasbemme a crucial
factor in the development process. Advances in technology
have and will further lead to even smaller device sizes,
driven by voltages as small as possibl&iven these
advances, thesysten& overall energy dissipatiowill be
influencedby up to 50%by the cache. New techniqubave
been proposed thaptimize already existing architecturies
minimize the overall power consumptiamorder toprovide
longer battery life mitigate thedesign limiting effects of
temperatureand provide better performangg[5][18].



On-chip cache memories make up a large fraction of the
overall chips size and thewg€ play a significant role in the
overall power consumption of the system. Recent research
has shown that the following factors influence the energy
conaimption by a significant amourit][5][18]: (1) static
leakage current, especially in myftdrt architecturg (2) the
use ofError Detection Codes (EDC) af8)) the use oError
Correction Codes (ECCAdditionally, a new concept that
utilizes the charge leakage of eell to improve access
latency and ultimately also improves the energy efficiency is
introduced. The following subsections provide a brief
introduction into each of tiseareas.

A. Leakage Current

Two types of leakage current®ainly contribute tothe
overall cache leakage curre(t) cell leakage current an@)

bit line leakage current. Further, there are a number of
factors that increase leakage currantluding the useof
multi-port cachesand the fact thateakage current scales
proportionally with the area of the circuif4]. In the
following, we exploretwo differentpromisingapproaches to
reduce the cache memory power dissipation namely,
Dynamic Memory Configurationand Software Sel
Invalidation and Data Conngssion

1) Dynamic Memory Configuration

Figure18 andFigure 19 show asix transistor singlgort
and dualport SRAM cell, respectivelyThe additional word
lines needed to access transist®r and T8 almost double
the silicon area of the singf®rt configuration. Keeping the
bit lines high, as well as ptharging, contributes
significantly to the overall power dissipatif4].

18 wewdwa
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Figure 18: Singleport SRAM cel[4]
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Figure 19: dualport SRAM cel[4]

The following equations describe the leakage currents
per cell displayed ifrigure18 andFigurel9 [4]:

‘0 O O °
0 o 0 0 Y

Previouyy used techniques to reduce leakage current
were based om fixed bank size andmployedduplicated
word and bit lines at theexpenseof either moderate
performance degradation or a large area overhBaglva et
al. [4] proposes a new cache architecture using isolation
nodes to partition a cache memory block itw@ virtually
independent sections that also employ -tea¢ accesof
addressegia multiple ports.

Figure 20 showsthe proposed placement of trsolation
Control Line (ICL) and isolation node on the corresponding
bit lines to divide the block intan upper port and lower
port, respectively. This approach enables qhaat access
without the need of a second pair of bit lines and thus
reduces the lkage current and the silicon area needed. Even
though additional ICLs are placed every n word lifBzgwa
et al.[4] states that the performance degradation for a value
of n = 8 poses nmegative effectsThe statistical pagrn of
accesss ofaddresses of targeted applications determines the
overall placement of the nodes
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Figure 20: ICL and Isolation node placemej]

The efficiency of this dynamically partitioning based
on an applied algorithm to determine the ICL and isolation
node placementConsiderations that go inttetermining the
optimal algorithm include delay, power dissipation and the
overall complexity of the proposed algorithrBajwa et al.
[4] evaluatestwo algorithms:(1) an algorithmfor optimal
partitioning that minimizes bitline latency and power
dissipation andq2) an algorithnthat does not require a new
partition for every memory acces$he pseudo codéor
algorithm(1) is as follows:



addr(A)<1:n>; addr(Bx1:n>;
where adr(A) =i > addr(b) = j;
if i =j+ 1 return ICL(j)
elsereturn ICL(j) and ICL(i-1)

The pseudo code for algorith®) is as follows:

addr(A)<1:n>; addr(Bx1:n>;
whereadr(A) =i > addr(b) = j;
k = current ICL;

if (j O k <
else return (j + €)/2);

eturn

i) r

Applying the above describeddynamic memory
configurationreduces theilicon area hat is needetiecause
no additional bitines and pass traistors are needed. This
results in a reduceléakage current angducedbit line pre-
charge currenby a fator of 50% of the value of a typuial
hardwired multiport memory. Lastly, the dynamic
configuration also introduces ledatency due to shorter
actve bit lines. The leakage current of a memory core with
N rows and M columns can now be calculated using the
following formula:

O 30 O O 0O Y
q

A paper e nt i tChcked Meriory Architecture for
Leakage Energy Reductiomy Tanaka et alj5] statesthat
future high performance processors need even larger
amounts of cache to bridge the speed gap between the
processor and the external memory. Given the increase in
cache size, it is @hthat enegy dissipation in ache memory
makes up 50% of the total energy dissipatioh the
processor systemHigher transistor counts and increds
clock frequeng result in decreasl battery lifetime and
highertemperature. To ensure performance improvement of
future microprocessors, it is necessary to improve the energy

efficiencyof cache memory systems.

2) Software Selfnvalidation and Data Compression

Tanaka et al[5] introducesa low-energy cache memory
hierarchy for orchip multiprocessors, which exploits gated
Vdd transistors and explicit gatdtld control. Two
mechanismareintroduced:(1) leakage energy reduction by
software seHnvalidation and(2) leakage energy reduction
by data compressiofi.he memory hierarchy is displayed in
Figure 21. It consists of Llinstructionand data azhes, a
write buffer, a L2 unifiedwrite-back cache on dip, and an
external main memoryThe compressor and decompressor
blocks are used to exploit energy leakage reduction as
explained later.

Cache blocks can become invalid if they receive an
invalidation requesfTurningoff these invalid blocks using
gatedVdd results in significant energy savings. In addition
to this method, a seifivalidation mechanism to further
increase the number of blocks that can be turned off is
applied.This mechanism makes use of a modified load/store
instructi otouckc all b 2d/ Htl ;arsa 0 . I
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conventional load/store function, the new instruction can

validate cache blocks after accessing them.
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Figure 21: Cache memory hierarchH$]

The invalidation is based on two conditions: (1) a cache
block is invalidated at the same time as it is accessed, and (2)
a word is marked when it is accessed. The cache block is
invalidated when all words ithe blockget marked5].

To enable the abovementioned improvemersight
modifications to the conventional L1 cache memory
structure are necessary. Léstich flag bits are added as a
part of the L1 cache tag informatioBachflag correspond
to a word in the blockFigure 22 illustrates the memory
structure for a 1®yte blockmade up of fouwords each
Tanaka et alstatesthat iwhen a lastouchword load/store
instruction isexeated the corresponding flag bit is cleared.
On the otler hand, when a latbuchblock load or store
instruction is exeded, all flag bits are cleared (as depicted
in the second row in the figure). Then, a block is invalidated
when allthe flagbitsa e c | [Blar ed. 0

The gateevdd designis implemented ashownin Figure
23. It isworth mentioninghat this figure is conceptual since
the address tag and data parts of the bletite toone or
more gateévdd transistors.

Last-touch
flag bits Data
" Wordl  Word2

Iew Id

Valid Address tag, etc.

WordD
Itw Id
Itb Id

Word3

ltwid | fwid | Itwid | Iwid

mlo|l-|lo|
~lo|l~|lo|lo
mlo|l~|lo|~
—|lo|l~|lo|lo
mlo|l~|lo|~

Figure 22: L1 cache memory structufg]

The data compressiontechnique employs data
compression thresholds of %, % and %. Compressed blocks
are stored in the L2 cache and the remaining space is turned
off using gatedvdd transistors. The overheadf
compression and decompression is negligible because the L2
cache ag:ccgss fregacy is not highln general, a compression

Fatio 28 Shall 'a8 rboséibfé i eSirableecause data



compressionas a whole resultgy higher processing cost,
larger chip area, andonger latency. These factors are
important when considering the tradeoffs tween cost,
performance, and the amount of enecgypserveds].

. Lasttoudh
Valid flag bits ~ Addresstag, etc. Data

| Wirtual ground

I Gated-Vdd

GMD

Figure 23: (conceptual) L1 gated¥dd control[5]

The tag information for the L2 cache is showrFigure
24. ficl0 and fic0d correspond to the compression thresholds
used aboveA combination offi000 equals no compression,
010 equals ¥compressionifil0d equals ¥and fil10 equals
Y, compression (of the original size of the dat@ijree
transistors are needed to support thégure, as showfid].
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Figure 24: L2 gatedVvdd control[5]

Five kernel programs in the SPLASHsuite were used
for the evaluation athe software invalidation technique

Table 1 contains the input data size and input fil@ble 3
displays the simulation results, normaelil tofbas®, which
refers to an execution without gat€dd control.finv.offois
with gatedvdd control of invalid blocks andlasttoucthd is

the execution with invalid blocks supported by the modified
last touch instructions.

Table 2 lists the numberof seltinvalidationsperformed
by lasttouch word or block instetions. The results ifable
2 and Table 3 show that leakage energy was significantly
reduced fotast touch instructions fagiLU-noncontiguoug o
andfRADIX 0 [5].

Tablel: Input data sizesinput file for SPLASFR programg5]

| Program | Input data size / input file |
FFT 65,536 complex
LU contig 256x256 matrix
LU non-contig 256x256 matrix
RADIX 262,144 keys
CHOLESKY wrl0.0
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Table2: The number of selfivalidations[5]

Program # of self-invalidation | # of ltw

Ith Itw instructions
FFT 36 66,044 264.190
LU contig 18 82,150 396,571
LU non-contig 18 157,156 908,555
RADIX 25 272,420 1.179.675
CHOLESKY 9 14,830 71,630

Table3: Results of lastouchload/store scheme in L1 cacf@

Exec. Exec. | Leakage
Program scheme time energy
base 1.0000 | 1.0000
FFT inv.off 1.0000 | 0.9938
last-touch | 0.9999 | 0.9752
base 1.0000 | 1.0000
LU-contig inv.off 1.0000 | 0.8447
last-touch | 0.9999 | 0.7943
base 1.0000 | 1.0000
LU-noncontig inv.off 1.0000 | 0.6607
last-touch | 0.9968 | 0.5360
base 1.0000 | 1.0000
RADIX inv.off 1.0000 | 0.0741
last-touch | 0.9989 | 0.5333
base 1.0000 | 1.0000
CHOLESKY inv.off 1.0000 | 0.0992
last-touch | 0.9997 | 0.0805

B. Error Detection Codes (EDCs) drError Correction
Codes (ECCs)

Energy particles can cause soft errors in cache memories.
Modern processors empldgDCs and ECCgo counteract
these errors. Enbpying these techniques result in a
significant overhead in terms of area and endrgybeh18]
proposes a new cache architecture to reduce energy
consumptionand reduce thearea overheathat result from
usingeDCs and ECCm L1 caches.

Soft errors are a major reason for system failures. They
can appear in the shape of Single Event Upsets (SEUS) or
Single Event Multiple Bits Upsets (SEMUs)The
technological advances mentioned in previous sections
(improvementof featuresizeand supply voltage) result in a
new challenge of handling the increased amount of SEUs
and SEMUs. In a 40nm feature size, the probability of an
SEMU caused by a particle strike is about 40this
percentage increasés low power techniques are appie
[18].

The newly proposed architecturealled fPerSet
Protected Cache (PSPached makes use of the fathat in a
set associative L1 cache, data words in all cache ways are
accessed in parallel. This enables minimization thod
number of redundant bits without reducing the protection
capability of EDGand ECG[18].

Figure25displays a convdional cache architecture (left
side) and the proposed architecture (right side). In a

conventional cache architect
Selection Logico. Further,
Logicd selects data based i nj
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Figure 25: Abstractview of(left) conventional cache architecture and (right) proposed PSP cache archit§t8jire

This data then proceeds to the EDC/ECC
Checker/Generator Logic and is delivered to the data bus. As
one can see in the righind side oFigure 25, asingle code
gets assigned to the data of all cache ways and the EDC/ECC
Checker/Generator Logic operates on all accessedldjta

Further, gparity code is applied, which is mostly used to
protect instruction and data cachetal integrity. For the
parity code, the number of redundant bits needed to detect a
specific number of bit errors is independent of the data
length. Therefore, the number of bits required to protect a
single cache way is equal to the number of bits reduio
protect all N cache way48].

fitThe main features of the proposed architecture are as
follows:

1 A negligible modification 6 cache architecture is
required to implement PSBache;

1 Itis appledto the tag array of cache memories in
addition to data array. Moreover, bothcAche and
I-cache can take advantages of this architecture;

1 It is independent of cache protection granularity.
Hence all setassociative caches with pXrbit
EDC/ECC protectin, when X is between a single
byte to the cache line length, can be transformed to
PSRCache architecture;

1 The efficiency of the proposed architecture
improves by increasing the caclassociativelyd
[18]

This architecture wasevaluated in terms of energy
consumption, area, and reliability.

1) Energy Consumption and Area Overheads

Redundant bits are the major source of area and energy

overheads. The Checker/Generatom $ toitribution to

both area and energy overheiadsmallerthan 1% ands
thereforenegligible The results displayed ifiable 4 show,

that the reduction in the number of redundant bits in-PSP
Cache is proportional to the cachesociatively Required
redundant bits are reduced by 50%, 75%, 87.5%viay, 4

way and 8way associative cachagspectivelyj18].

Figure 26 displays the improvement in energy overhead
of PSRCache for different cache architectures, normalized
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to the baseline cache. An okiead reduction by 49%, 73%
and 85% for avay, 4way and 8way setassociative caches
can be achieved, respectively.

2) Reliability Analysis

For this analysis, the effect of the newly introduced
architecture on SEUs and SEMUSs is taken into account. It
was contuded that the architecture does not hurt the
capability to detect and correct SEUs or SEMUSs, regardless
of the data length. Thus, it doekegradethe protection
capability of EDC/ECC codd18].

Table4: Number of redundant bits required to protect cache for
different cache associatively and protection cdd&$

Number of redundant bits
PSP-Cache
EDC/ECC type Baseline
cache 2-way 4-way 8-way
cache cache cache
1-bit parity N N N
N - — —
per word 2 4 8
Z-bl.t interleaved N N N N
parity per word 2 4
4_bi.t interleaved N 2N N N
parity per word 2
8-bi t interleaved an AN 2N N
parity per word
9N 10N 11N
SEC-DED (72,8) 8N — — —
2 4 8
N : Number of words in the cache

Figure 26: Normalized dynamic energy for baseline cache and
PSRCache[18]



