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AbstractðIn computer systems, the cache memory 

architecture has a significant impact on both, system 

performance and system cost. Further, the gap between 

processor performance and cache memory performance 

is widening at the disadvantage of the overall system 

performance. In this paper, we explore the important 

aspects that impact cache memory architecture 

performance and cost, including: (1) An overview of 

present state-of-the-art cache memory architectures. (2) 

We examine the latest advances in cache controllers and 

energy management. (3) We explore important aspects of 

cache memory organization, including cache mapping, 

spatial cache and temporal cache techniques. (4) We 

provide an analysis of performance of state-of-the-art 

cache memory architecture implementations including 

new promising memory technologies. (5) We end by 

considering future research areas that may prove 

promising in narrowing the performance gap between 

cache memory performance and processor performance. 

Overall, improvements in cache memory architectures 

stand to make a significant impact in unlocking major 

improvements in high performance computer 

architectures.  

Keywordsðcache memory architecture; cache data mapping; 

prefetching; low-power cache; cache coherency 

I. INTRODUCTION 

Modern high-performance computer architectures, such 

as the one shown in Figure 1, would not exist without cache 

memories. Nonetheless, since the first implementations of 

cache memories, the imbalance between the processor 

system performance and the cache memory system 

performance has had a detrimental impact on the overall 

system performance [2].  Amazingly, the gap between 

processor system performance and cache system 

performance was recognized as early as the 1970s [3]. 

 

Figure 1: Photograph of Intel Xeon processor 7500 series die 

showing cache memories (center) [1]  

Unfortunately, sub-optimal cache system performance 

still remains as one of the largest limiting factors to optimal 

system performance right up to present times. To put this 

into prospective, some facts that have been recognized for 

over 30 years include [3]: 

1) It has been estimated that as processor gate counts 

continue to inevitably increase. To be precise: for every 

10-fold increase in transistor gate count, the required 

memory bandwidth demand increases by 30-fold. 

2) The small cache memories within a processor make up 

a larger cost impact, by percentage, than the larger 

external memories. 

3) From the onset of cache memories in the 1970s, it has 

been estimated that the required bandwidth to supply 

the core processors with instructions and data exceeds 

the ability of the cache memory to supply the needed 

bandwidth by a factor of 300%. 

Further, it is estimated that 50% of power consumption in 

advanced computer architectures is a direct result of how 

efficient (or inefficient) the cache memory system performs 

[4][5][6]. Thus, since the introduction of cache memory 

architectures, researchers have and continue to struggle with 

the very same topics of cache coherency [7][8][9], write-

through versus write-back [10] and optimal cache size 

[3][11][12]. To address the abovementioned limitations, 

consistent topics that researchers have heavily researched, 

and continue to research, include the following areas [13]: 

1) Cache memory access prediction improvements related 

to spatial memory access (e.g., locality of data accesses 

by address) and temporal memory access (e.g., locality 

of data accesses in time). 

2) Optimization of cache memory associativity to main 

memory.  In other words, finding the optimal methods 

to map cache memory to main memory. 

3) The development of intelligent software compilers to 

attempt to improve cache accesses based on prediction 

(e.g., determining via software compilers, how likely 

certain memory addresses will be accessed). 

4) Improvements in the mapping of L1 cache memory 

contents to that of L2 cache memory contents. 

5) Advancement in the performance of mapping cache 

memory to main memory via the TLB (Translation 

Lookaside Buffer). 

6) Hardware prefetching enhancements to better supply 

optimal memory prefetcher performance. 

II. OBJECTIVES AND CONTRIBUTIONS 

The objective of this paper is to take the reader to the 

forefront of the battle to improve the imbalance between 

processor system performance and cache system 
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performance.  Specifically, we focus in a number of core 

areas that are further discussed below. 

In Section 3 ï ñAdvances in Cache Data Management: 

Prefetching, Bandwidth Management, Scheduling, and Data 

Placementò, we point to the most recent research related to 

improving how cache memory is used.  We include a review 

of novel advancements in cache prefetching, improvements 

in cache memory bandwidth utilization, and optimizations of 

data placement within the cache memory system 

[14][15][16][17]. Given the fact that cache memory to 

processor system bandwidth is a major bottleneck, we point 

to new research to utilize valuable bandwidth resources in 

the absolute most efficient manner. 

1) As an example, we review promising techniques to 

efficiently1 learn and intelligently associate an array of 

different types of prefetchers to the software that is 

being executed (e.g., selecting the best prefetcher based 

on the application(s) being run). Based on this 

technique, the solution offers a worst case 1.4% to 

18.7% improvement over the best present day 

techniques, while at the same time, using less memory 

and logic overhead [14]. 

2) As yet another example, based on intelligent thread and 

data placement schemes, we point to research that 

provides a 46% increase in cache memory system 

performance as compared to present day NUCA (Non-

Uniform Cache Architectures) [15]. 

In Section 4 ï ñLeading-Edge Hardware Implementations 

and Opportunitiesò, we point to modern day challenges and 

potential breakthroughs related to the considerable impact 

that cache memories have on system power requirements, 

access speed, fault tolerance and reliability [4][5][6][18]. 

1) We are intrigued and examine advances that have 

allowed low power battery operated devices to employ 

cache based systems. Such advances offer significantly 

low power consumption, yet provide superior cache 

performance [4][5]. 

2) We further evaluate and provide insight into new 

opportunities to speed up cache memory accesses by as 

much as 11.3% (and an encouraging 8.6% speed up on 

average) when combined with present day NUAT 

(Non-Uniform Access Time) memory [6]. 

In Section 5 ï ñSpecial Topics in Cache Memory 

Architecturesò, we discuss advances in the overall processor 

and cache memory core architecture [19][20][21][22][23]. 

1) We examine the concept of ñcloningò - a technique to 

simulate actual workloads of proprietary programs to 

find optimal cache memory architectures that can then 

be applied to actual real-world applications.  By doing 

so, the processor / cache memory core architecture can 

more easily be evaluated and then optimized [19]. 

2) We point to promising new architectures.  For example, 

we look to new breakthroughs in processor system stall 

avoidance, providing a 6% improvement on a 4-core 

processor system [23]. 

3) We look to advances that proactively and predicatively 

identify cache contents that will not be used in the 

                                                           
1 Efficiency in both memory space and 

hardware/logic/computational complexity implementation. 

future (e.g., dead blocks) so that the unused cache 

content can be replaced by relevant content, thus 

reducing wasted cache energy by 20% [21]. 

In Section 6 ï ñConclusionò, we summarize our findings 

and provide a case study of taking cache memory 

architecture research from ñconcept to realityò via the Intel 

Xeon Haswell processor [24].  We also consider new 

frontiers for future work including optical cache memory 

architectures [25]. 

III.  ADVANCES IN CACHE DATA MANAGEMENT: 

PREFETCHING, BANDWIDTH MANAGEMENT, 

SCHEDULING AND DATA PLACEMENT 

Advances in cache data management techniques offer a 

wide range of exciting opportunities to improve overall 

cache memory system performance. In this section, we 

discuss advances related to cache data management 

including: 

¶ Advanced prefetching that employs a unique way to 

monitor and then select the optimal prefetcher. 

¶ Bandwidth management techniques based on the 

prediction of bandwidth requirements for multiple 

threads of software running on multiple processor 

cores. 

¶ Cache data scheduling, that creates virtual cache 

memories that transcend across multiple threaded 

applications and even multiple processors. 

¶ Unique cache data placement management 

techniques entailing algorithms and architectures 

used to determine where to store data in relation to 

SRAM and STT-RAM (Spin-Transfer Torque 

RAM).  

A. Advanced Prefetching 

Cache Prefetching is a Technique used in modern day 

computer processors to improve the execution speed by 

prefetching instructions/data from main memory and 

supplying the instructions to cache memory. Modern day 

computer processors use high speed cache memory, whereas 

fetching of instructions and data for processing is much 

faster from cache memory as compared to accessing the 

same from main memory. There are multiple techniques to 

implement cache prefetching, and the techniques are broadly 

classified under: (1) hardware based and (2) software based 

implementations. In hardware based prefetching, there is 

dedicated hardware that monitors the stream of 

instructions/data being requested by the program under 

execution. The hardware prefetches the next set of 

data/instructions that the program being executed might 

request. Figure 2 is an example of a hardware based 

prefetching technique (Stream Buffer) as proposed by 

Norman Jouppi [26]. 

In contrast to hardware prefetching, for software based 

prefetching, the prefetching mechanism is applied during the 

compilation time of the program. Compiler based 

prefetching techniques are more widely adopted in the case 

of loops that contain a large number of iterations. At 

compilation time, the compiler predicts the future cache 

misses and inserts a prefetch instruction based on the miss 

penalty and execution time of the instruction. Through 

compiler based prefetching techniques, run time true data 
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dependency issues cannot be resolved during compilation 

time. In this section, we will discuss the recent trends in 

cache prefetching techniques which involves hardware, 

software and a combination of both mechanisms involved.  

 

Figure 2: Stream buffer proposed by Jouppi [26]  [27]  

B. The Sandbox Prefetching Technique 

The sandbox prefetching technique is based on the use of 

a Bloom filter. The Bloom filter was proposed by Burton 

Howard Bloom in 1970.  The Bloom filter is a probabilistic 

model to test whether a data element is a member of a set. A 

query to a Bloom filter returns ñpossibly in setò if the 

element is present or ñdefinitely not in setò if the element is 

not present in the set. 

In the paper ñSandbox Prefetching: Safe Run-Time 

Evaluation of Aggressive Prefetchersò, Pugsley et al. [14] 

presents a hardware base technique which provides features 

of aggressive prefetching, yet avoids bandwidth and cache 

capacity wastage due to aggressive prefetching. The key 

feature of the sandbox prefetching technique is the reduced 

latency overhead in prefetching by using a Bloom Filter 

among other methods. The sandbox prefetching technique 

uses the concept of global pattern confirmation and 

immediate prefetch action, thereby enabling better execution 

performance [14]. 

 
Figure 3: Figure showing sandbox prefetcher architecture [14]  

Figure 3 shows the placement of the sandbox unit within 

the memory hierarchy. As shown in Figure 3, the sandbox 

unit doesnôt impact normal cache actions. The sandbox 

prefetch mechanism proposed by Pugsley et al. [14] has a 

separate sandbox prefetch unit and a sandbox unit. The 

sandbox technique begins by monitoring multiple prefetcher 

algorithms, seeking to find the most effective prefetcher 

algorithm. The sandbox unit keeps the score (hits versus 

misses) of candidate prefetchers, based on the outcome of 

individual cache lines being a hit or a miss. Each time there 

is a cache access, the corresponding prefetcher candidate 

score is incremented based on a hit. Once the score of a 

candidate prefetcher crosses a threshold, the prefetch 

mechanism control is taken over by sandbox prefetch unit. 

Figure 4 shows the sandbox prefetching actions for each L2 

access [14]. Sandbox prefetching maintains a set of 16 

candidate prefetchers and each candidate is evaluated in a 

round-robin fashion [14].   

 

Figure 4: Sandbox prefetching action on each L2 access [14]  

Figure 5 (see next page) shows the performance of 

SandBox Prefetching (SBP), normalized to a no-prefetch 

baseline. The sandbox technique is compared with No 

Prefetching (No PF), Feedback Directed Prefetching (FDP) 

and Address Map Pattern Matching (AMPM). Sandbox 

prefetching provides better performance when compared to 

the other prefetching mechanisms [14]. 

C. Bandwidth Shifting 

Current modern day microprocessors have multiple cores 

and run multiple threads concurrently. Novel techniques 

have been proposed, with the idea of dynamically assigning 

needed bandwidth to applications based on the prefetch 

efficiency of each thread. 

Increased in Multicore System Efficiency Through Intelligent 

Bandwidth Shifting 

Jimnez et al. [16] introduces a technique that increases 

multicore system efficiency through intelligent bandwidth 

shifting.  Data prefetching hides memory access latency, but 

not all of the prefetched data is accurately fetched, thus 

reducing the performance of the system. The technique 

employed by Jimnez et al. provides an efficient software 

mechanism for dynamically assigning memory bandwidth 

for each thread, based on the predicted prefetch efficiency.  

The technique assures backward compatibility [16]. The 

technique further provides the following characteristics: 

¶ Prefetch based bandwidth shifting to characterize 

performance. 

¶ Metrics to estimate prefetch usefulness. 

¶ Novel bandwidth shifting mechanisms to increase 

performance. 

¶ Evaluation of bandwidth shifting. 
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Figure 5: Performance normalized to no-prefetch baseline [14]  

 

To expand, Figure 7 shows the throughput and 

bandwidth consumption of a subset of benchmarks defined 

in the SPEC CPU2006 benchmark specification. Figure 7, 

indicates Deep, Shallow and OFF regions. In the Deep 

region, the prefetcher uses the longest distance available for 

prefetching.  The Shallow region uses the shortest distance 

for prefetching. Lastly, the OFF region refers to the 

prefetching action being turned off. Figure 7 clearly indicates 

that when more than 16 threads are being used, the 

bandwidth usage and performance saturates. All of the 

performance benchmarks are evaluated on an IBM POWER7 

machine. Jimnez et al. [16] states that the benchmark results 

are not exclusive to the IBM POWER7 machine used by 

Jimnez et al. The efficiency of prefetching applications 

varies, depending on the memory access pattern and the 

availability of bandwidth. Jimnez et al. [16] also states that 

there were no severe impacts observed when changing to 

aggressive prefetch actions. The proposed technique of 

bandwidth shifting uses only DEEP and OFF settings for the 

prefetching mechanism [16]. 

The bandwidth shifting algorithm proposed by Jimnez et 

al. [16] uses an iterative approach.  Initially the configuration 

is set to the most aggressive prefetch setting. Next, the 

algorithm computes the usefulness of prefetching an 

instruction for each thread and tabulates the result. The 

evaluation of prefetch usefulness is done by frequently 

turning on and off the prefetching for each thread and then 

measuring the Instruction Per Cycle (IPC) and bandwidth 

usage under both the on and off configurations. Figure 6 

shows the base implementation of the algorithm [16]. 

The base algorithm shown in Figure 6 introduces a 

problem: there is a lack of hardware resources while high 

Prefetch Usefulness (PU) threads are running on the system 

due to the limited number of prefetch streams that can be 

allocated.  To overcome this problem, as shown in Figure 8, 

Jimenez et al. [16] introduced a modified base algorithm 

which increases performance by 33% when compared to the 

performance of the algorithm shown in Figure 6 [16]. 

 

Figure 6: Base bandwidth Shifting algorithm [16]  

 

Figure 7: Throughout and memory bandwidth consumption characteristics for a subset of benchmarks [16]
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Figure 8: Modified base algorithm [16]  

In the modified algorithm shown in Figure 8, the initial 

mechanism is the same as that of the base algorithm as 

shown in Figure 6.  A number of additional steps are also 

added as follows:  

¶ Step 1: Measuring system performance by turning 

ñoffò the prefetching for a thread. 

¶ Step 2: Testing if there was a positive impact on the 

system when the prefetch mechanism is turned 

ñoffò for a given thread. 

¶ Step 3: If there was improvement by turning ñoffò 

prefetching for a given thread, a decision to turn 

ñonò or ñoffò the prefetch action for a given thread 

will be considered again in the next iteration. 

Figure 9 illustrates the positive effect of the bandwidth 

shifting algorithm on system performance. Figure 9 plots a 

function of the prefetch friendly algorithm ñbwavesò (which 

we assign the value ñzò to the number of simultaneous thread 

instances running) and the prefetch unfriendly algorithm 

ñomnetppò (which we assign the value ñxò to the number of 

simultaneous thread instances running) as benchmarks. 

Specifically, Figure 9 shows the amount of speedup for 32 

processes running simultaneously, with the x-axis 

representing the number of unfriendly algorithm ñomnetppò 

simultaneous thread instances running (ñxò) as a function of 

the number of friendly algorithm ñbwavesò simultaneous 

thread instances running (ñzò).  Thus, x + y = 32 [16]. 

 

Figure 9: Effect on bandwidth shifting on system performance with 

prefetch efficient (bwaves) and inefficient (omnetpp) threads [16]  

D. Scaling Cache Hierarchies Through Computation and 

Data Co-Scheduling 

Today, Non-Uniform Cache Architecture (NUCA) is the 

most widely used method to extract improved performance 

from cache memory systems. Advanced techniques of 

NUCA include: (1) Reactive Non-Uniform Cache 

Architecture (R-NUCA) and (2) Static Non-Uniform Cache 

Architecture (S-NUCA). Recently, better techniques that 

further improve R-NUCA and S-NUCA have been proposed.  

Such improvements provide better cache memory 

management and improved thread scheduling to derive better 

system performance. One such technique is referred to 

Computation and Data Co-Scheduling (CDCS) [15]. 

Computation and Data Co-Scheduling technique (CDCS) 

One example of cache memory scheduling is disclosed in 

the paper ñScaling Distributed Cache Hierarchies through 

Computation and Data Co-Schedulingò by Beckman et al. 

[15]. Beckman et al. proposed a technique called 

Computation and Data Co-Scheduling (CDCS), a technique 

that relates to the placement of threads and data using 

distributed shared caches in a multiprocessor environment. 

The main contributions the Beckman et al. [15] paper are as 

follows: 

¶ A novel thread and data placement scheme that 

considers both data and access intensity by threads 

across multiprocessor tiles. 

¶ An enhanced design of a geometric sampling curve 

monitors that scales within a very large NUCA. 

¶ Hardware that enables incremental reconfiguration 

of NUCA caches. 

The CDCS technique then tags data to the virtual cache 

using virtual cache ñidsò (IDs).  For every L2 level cache 

miss using the VC (Virtual Cache) ñidò, CDCS determines 

where the cache line resides in the memory subsystem. A 

Virtual Translation Buffer, referred to as a ñVTBò, as shown 

in Figure 10, stores the configuration for all virtual cache 

memory groups that a given executing thread can access. 

Virtual cache configurations are periodically changed by 

CDCS software (every 25ms); changing both the bank and 

partition sizes on the fly during runtime, based on how data 

is accessed by the executing threads. A block diagram of 

how the virtual cache is reconfigured is shown in Figure 10. 

 

Figure 10: An example of LLC access using CDCS [15] 
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Figure 11: CDCS implementation with 64 tile CMP [15] 

Figure 11 shows the hardware black box hardware 

implementation of CDCS. Each tile has a core and a slice of 

Last Level Cache (LLC). An on-chip network topology 

establishes connection between a tile and the memory 

controllers that reside at the edges. 

CDCS is based on NUCA methodology and allows 

software to divide each cache bank into multiple partitions. 

Collections of portioned caches are grouped and are made 

visible to software threads as a single cache. The grouping of 

the caches provides the software with flexibility to define 

multiple virtual caches and to configure them into different 

sizes of virtual cache memory [15]. 

Figure 12 shows the thread and data placement under R-

NUCA techniques, where thread private data is stored for 

threads in the processorôs local memory bank. Figure 13 

shows how the thread and data is placed using the CDCS 

technique provides a 400% higher speed-up over the R-

NUCA technique [15]. 

 

 

 

Figure 12: R-NUCA workload organization schemes on 36 tile 

CMP [15]  

CDCS software provides different levels of virtual 

caches. During execution, each thread is provided with a 

thread private cache at the OS-level.  Common data between 

the threads of the same process are placed in a process 

private cache, and common data between the processes are 

placed in a global virtual cache.  Based on these techniques, 

faster access to data is provided and cache pollution is 

reduced. The CDCS technique provides a 46% increase in 

performance when compared other NUCA techniques, and 

provides 36% better energy efficiency when compared to S-

NUCA [15]. 

 

Figure 13: CDCS workload organization schemes on 36 tile CMP 

[15]  

E. Adaptive Placement Policies for Data in Cache Memory 

Systems 

Another leading area of research is the intelligent 

placement of cache memory contents in differing types of 

memory within cache memory systems and main memory. 

For example, a hybrid of cache memory system consisting of 

DRAM, SRAM and even STT-RAM.  

An Adaptive Placement and Migration Policy for an STT-

RAM Based Hybrid Cache System 

One such paper that considers new data placement 

polices for data blocks in cache memory systems is the paper 

ñAdaptive Placement and Migration Policy for an STT-

RAM-Based Hybrid Cacheò by Wang et al. [17]. \Wang et 

al. [17] proposes an Adaptive block Placement and 

Migration policy (APM) for hybrid caches. The technique 

proposed by Wang et al. places the block in either STT-

RAM (Spin-Transfer Torque ï RAM) or SRAM, based on 

an adaptive placement and migration policy algorithm. The 

technique proposed by Wang et al. combines the advantages 

of low leakage power and high packing density offered by 

STT-RAM with the low write overhead of SRAM [17]. 

To expand, Wang et al. categorizes LLC cache accesses 

into three distinct classes: (1) core-write, (2) prefetch-write 

and (3) demand-write. Turning to (1) - core-write, a core-

write is a write from the core to the LLC. For a write through 

core cache, a core-write entails directly writing from the core 
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through to the LLC. For a write-back core cache, a core-

write entails evicting dirty data from the core cache and a 

write back to the LLC. For (2) - prefetch-write, a prefetch-

write is a write replacement of the block from LLC caused 

by a prefetch miss. For (3) - demand-write, a demand-write 

is a write block replacement from LLC caused by a demand 

miss. The technique proposed by Wang et al. [17] is based 

on block replacement if the request is initiated by a write 

access. Wang et al. [17] introduces an intelligent block 

placement policy as follows: 

¶ SRAM should be used for the majority of the write 

actions, thus avoiding write overhead involved in 

STT-RAM. 

¶ Frequently used blocks should be placed in LLC to 

achieve reduced memory access latency, reduced 

overhead, and less complexity within the overall 

design. 

¶ Block placement is often initiated by a write access 

to the LLC which Wang et al. further 

subcategorizes to be either a (1) prefetch-write, (2) 

core-write or (3) demand write as discussed above 

[17].  

 

Figure 14: Distribution of LLC write accesses. Each type of write 

access accounts for a significant fraction of total write accesses 

[17]  

Figure 14 shows the breakdown of block placement for 

(1) core-write, (2) prefetch-write and (3) demand-write to the 

LLC. Wang et al. [17] further teaches two types of ranges: 

(1) read-range and (2) depth-range, which is further 

described as follows: 

¶ Read-Range: The read-range is a property of a 

cache block that fills the LLC by a demand-write or 

prefetch-write request. It is the largest interval 

between consecutive reads of the block from the 

time it is placed into the LLC until the time it is 

evicted [17]. 

¶ Depth-range: The depth-range is a property of a 

core-write access. It is the largest interval between 

accesses to the block from the current core-write 

access until the next core-write access to the same 

block. The ñdepthò refers to how deep the block 

descends into the LRU stack before it is accessed 

again [17]. 

In Figure 15, ñRaò represents the Read block ñaò and 

ñWaò represents the Write block ñaò. The distance between 

successive block reads is referred to as ñread-rangeò as 

discussed above. The distance between a write access to that 

of reading the same data is referred to as ñdepth-rangeò as 

discussed above. ñWaò equals 0 and represents an evicted 

block from cache, e.g., the least used data from cache is 

kicked out from the cache memory.  Read-range/depth-range 

is further classified as follows [17]: 

¶ Zero-read/depth-range: Data is filled into the LLC 

by a prefetch or demand request/core-write request, 

and it is never read/written to again before it is 

evicted. 

¶ Immediate-read/depth-range: The read/depth-range 

ñIò (which is further set to be smaller than a 

parameter ñmò, where m = 2 is the number of 

SRAM ways in the STT-RAM/SRAM hybrid cache 

configuration). 

¶ Distant-read/depth-range: The read/depth-range is 

larger than m = 2 and at most, the associatively of 

the cache set which is 16 in STT-RAM/SRAM 

configuration. 

 

Figure 15: Example illustrating read-range and depth-range [17]  

The technique proposed by Wang et al. [17] uses the 

read-range to analyze the access patterns of LLC.  Figure 16 

shows each access pattern and each category is further 

classified based on read-range/depth-range. A summary of 

the results are as follows: 

¶ Zero-read/depth-range corresponds to 26% of all 

prefetches on average. For prefetch-writes, because 

the category is never used until a miss occurs and 

then a block is evicted from cache, the prefetched 

block should be placed in SRAM as to avoid the 

write overhead of STT-RAM.  

¶ Immediate-read-range corresponds to 56.9% on 

average. The data associated with this category 

should likewise be placed in SRAM to provide fast 

access for immediate use. Using SRAM for this 

category mitigates STT-RAM involvement in 

eviction once the cache block is dead.  

¶ Distant-read corresponds to 17.5% on average.  For 

this category, data should be placed in STT-RAM 

to make use of large capacity to avoid cache misses. 

In the proposed design by Wang et al. for core-write 

access misses, the data is directly written back to the main 

memory. Zero-read-range blocks should be bypassed from 

cache because the data will not be used except for eviction  

from cache of a dead block. Thus, bypassing zero-read-

range blocks will reduce the write operations to LLC. 
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Figure 16: The distribution of access pattern of each type of LLC write access [17]  

 

Figure 17: Flow chart of the adaptive block placement and migration mechanism (errors as shown in the original) [17]  

Figure 17 shows the flow chart of the proposed design. 

Each block is associated with a prediction bit indicating 

whether the block is dead. On a cache miss the prefetched 

data is placed into the SRAM; and the prediction bit that 

predicts if the block is dead is set to 1 (e.g., it is assumed 

dead on arrival). An access bit pattern predictor, predicts 

whether the block in SRAM is dead. The proposed scheme 

reduces the overhead of STT-RAM by using the following 

schemes [17]: 

¶ By bypassing dead on arrival blocks. 

¶ By introducing an SRAM line filter to filter write 

operations caused by inaccurate and immediate-

read-range prefetch requests. 

¶ By placing frequently used core-write blocks in 

SRAM. 

The access pattern predictor makes a prediction in the 

following three conditions: (1) when a core-write request is a 

hit within the STT-RAM lines, the write burst prediction 

table will be accessed to predict whether it is a write burst 

request; (2) for each read hit request within the SRAM lines, 

the dead block prediction table will be accessed to predict 

whether it is a dead block; (3) on a demand-write request, the 

dead block prediction table will be accessed to predict 

whether the request is a dead-on-arrival block request [17]. 

Overall, the block placement technique proposed 

achieves higher performance by placing distant-read-range 

blocks in STT-RAM and by bypassing the zero-read-range 

cache lines in order to avoid write overhead; SRAM 

provides better efficiency in evicting inaccurately fetched 

data blocks. 

IV.  LEADING-EDGE HARDWARE IMPLEMENTATIONS 

AND OPPORTUNITIES 

Given the steadily growing market for battery-powered 

devices (e.g., mobile phones or wireless embedded sensor 

networked devices), energy efficiency has become a crucial 

factor in the development process. Advances in technology 

have and will further lead to even smaller device sizes, 

driven by voltages as small as possible. Given these 

advances, the systemôs overall energy dissipation will be 

influenced by up to 50% by the cache. New techniques have 

been proposed that optimize already existing architectures to 

minimize the overall power consumption in order to provide 

longer battery life, mitigate the design limiting effects of 

temperature, and provide better performance [4][5][18].  
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On-chip cache memories make up a large fraction of the 

overall chips size and therefore play a significant role in the 

overall power consumption of the system. Recent research 

has shown that the following factors influence the energy 

consumption by a significant amount [4][5][18]: (1) static 

leakage current, especially in multi-port architectures, (2) the 

use of Error Detection Codes (EDC) and (3) the use of Error 

Correction Codes (ECC). Additionally, a new concept that 

utilizes the charge leakage of a cell to improve access 

latency and ultimately also improves the energy efficiency is 

introduced. The following sub-sections provide a brief 

introduction into each of these areas. 

A. Leakage Current 

Two types of leakage currents mainly contribute to the 

overall cache leakage current: (1) cell leakage current and (2) 

bit line leakage current.  Further, there are a number of 

factors that increase leakage current, including the use of 

multi-port caches and the fact that leakage current scales 

proportionally with the area of the circuit [4].  In the 

following, we explore two different promising approaches to 

reduce the cache memory power dissipation, namely, 

Dynamic Memory Configuration and Software Self-

Invalidation and Data Compression. 

1) Dynamic Memory Configuration 

Figure 18 and Figure 19 show a six transistor single-port 

and dual-port SRAM cell, respectively. The additional word 

lines needed to access transistors T7 and T8 almost double 

the silicon area of the single-port configuration. Keeping the 

bit lines high, as well as pre-charging, contributes 

significantly to the overall power dissipation [4]. 

 
Figure 18: Single-port SRAM cell [4]  

 
Figure 19: dual-port SRAM cell [4]  

The following equations describe the leakage currents 

per cell displayed in Figure 18 and Figure 19 [4]: 

 

Ὅ  Ὅ Ὅ Ὅ  

Ὅ  Ὅ Ὅ Ὅ Ὕ 

 

Previously used techniques to reduce leakage current 

were based on a fixed bank size and employed duplicated 

word and bit lines at the expense of either moderate 

performance degradation or a large area overhead.  Bajwa et 

al. [4] proposes a new cache architecture using isolation 

nodes to partition a cache memory block into two virtually 

independent sections that also employ real-time access of 

addresses via multiple ports. 

Figure 20 shows the proposed placement of the Isolation 

Control Line (ICL) and isolation node on the corresponding 

bit lines to divide the block into an upper port and lower 

port, respectively. This approach enables dual-port access 

without the need of a second pair of bit lines and thus 

reduces the leakage current and the silicon area needed. Even 

though additional ICLs are placed every n word lines, Bajwa 

et al. [4] states that the performance degradation for a value 

of n = 8 poses no negative effects. The statistical pattern of 

accesses of addresses of targeted applications determines the 

overall placement of the nodes. 

 

Figure 20: ICL and Isolation node placement [4]  

The efficiency of this dynamically partitioning is based 

on an applied algorithm to determine the ICL and isolation 

node placement.  Considerations that go into determining the 

optimal algorithm include: delay, power dissipation and the 

overall complexity of the proposed algorithm. Bajwa et al. 

[4] evaluates two algorithms: (1) an algorithm for optimal 

partitioning that minimizes bit line latency and power 

dissipation and (2) an algorithm that does not require a new 

partition for every memory access. The pseudo code for 

algorithm (1) is as follows: 
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 addr(A) <1:n>; addr(B) <1:n>; 

 where adr(A) = i > addr(b) = j; 

 if  i = j + 1 return ICL(j) 

 else return ICL(j) and ICL(i-1) 

 

The pseudo code for algorithm (2) is as follows: 

 

 addr(A) <1:n>; addr(B) <1:n>; 

where adr(A) = i > addr(b) = j; 

k = current ICL; 

if (j Ò k < i) return NUL (no new DMP); 

else return (j + (i-j)/2); 

 

Applying the above described dynamic memory 

configuration reduces the silicon area that is needed because 

no additional bit lines and pass transistors are needed. This 

results in a reduced leakage current and reduced bit line pre-

charge current by a factor of 50% of the value of a typical 

hardwired multi-port memory. Lastly, the dynamic 

configuration also introduces less latency due to shorter 

active bit lines. The leakage current of a memory core with 

N rows and M columns can now be calculated using the 

following formula: 

 

Ὅ
ὔ

ς
ὓ Ὅ Ὅ Ὅ Ὕ  

 

A paper entitled ñCache Memory Architecture for 

Leakage Energy Reductionò by Tanaka et al. [5] states that 

future high performance processors need even larger 

amounts of cache to bridge the speed gap between the 

processor and the external memory. Given the increase in 

cache size, it is said that energy dissipation in cache memory 

makes up 50% of the total energy dissipation of the 

processor system. Higher transistor counts and increased 

clock frequency result in decreased battery lifetime and 

higher temperature. To ensure performance improvement of 

future microprocessors, it is necessary to improve the energy 

efficiency of cache memory systems. 

2) Software Self-Invalidation and Data Compression 

Tanaka et al. [5] introduces a low-energy cache memory 

hierarchy for on-chip multiprocessors, which exploits gated-

Vdd transistors and explicit gated-Vdd control. Two 

mechanisms are introduced: (1) leakage energy reduction by 

software self-invalidation and (2) leakage energy reduction 

by data compression. The memory hierarchy is displayed in 

Figure 21. It consists of L1 instruction and data caches, a 

write buffer, a L2 unified write-back cache on chip, and an 

external main memory. The compressor and decompressor 

blocks are used to exploit energy leakage reduction as 

explained later. 

Cache blocks can become invalid if they receive an 

invalidation request. Turning off these invalid blocks using a 

gated-Vdd results in significant energy savings. In addition 

to this method, a self-invalidation mechanism to further 

increase the number of blocks that can be turned off is 

applied. This mechanism makes use of a modified load/store 

instruction called ñlast-touch load/storeò. In addition to the 

conventional load/store function, the new instruction can 

validate cache blocks after accessing them. 

 

Figure 21: Cache memory hierarchy [5]  

The invalidation is based on two conditions: (1) a cache 

block is invalidated at the same time as it is accessed, and (2) 

a word is marked when it is accessed. The cache block is 

invalidated when all words in the block get marked [5]. 

To enable the abovementioned improvements, slight 

modifications to the conventional L1 cache memory 

structure are necessary. Last-touch flag bits are added as a 

part of the L1 cache tag information. Each flag corresponds 

to a word in the block. Figure 22 illustrates the memory 

structure for a 16-byte block made up of four words each. 

Tanaka et al. states that ñWhen a last-touch-word load/store 

instruction is executed the corresponding flag bit is cleared. 

On the other hand, when a last-touch-block load or store 

instruction is executed, all flag bits are cleared (as depicted 

in the second row in the figure). Then, a block is invalidated 

when all the flag bits are cleared.ò [5]. 

The gated-Vdd design is implemented as shown in Figure 

23. It is worth mentioning that this figure is conceptual since 

the address tag and data parts of the block relate to one or 

more gated-Vdd transistors. 

 

Figure 22: L1 cache memory structure [5]  

The data compression technique employs data 

compression thresholds of ¾, ½ and ¼. Compressed blocks 

are stored in the L2 cache and the remaining space is turned 

off using gated-Vdd transistors. The overhead of 

compression and decompression is negligible because the L2 

cache access frequency is not high. In general, a compression 

ratio as small as possible is desirable, because data 
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compression as a whole results in higher processing cost, 

larger chip area, and longer latency. These factors are 

important when considering the tradeoffs between cost, 

performance, and the amount of energy conserved [5]. 

 

Figure 23: (conceptual) L1 gated-Vdd control [5]  

The tag information for the L2 cache is shown in Figure 

24. ñc1ò and ñc0ò correspond to the compression thresholds 

used above. A combination of ñ00ò equals no compression, 

ñ01ò equals ¾ compression, ñ10ò equals ½ and ñ11ò equals 

¼ compression (of the original size of the data). Three 

transistors are needed to support this feature, as shown [5]. 

 

Figure 24: L2 gated-Vdd control [5]  

Five kernel programs in the SPLASH-2 suite were used 

for the evaluation of the software invalidation technique.  

 

Table 1 contains the input data size and input file. Table 3 

displays the simulation results, normalized to ñbaseò, which 

refers to an execution without gated-Vdd control. ñinv.offò is 

with gated-Vdd control of invalid blocks and ñlast-touchò is 

the execution with invalid blocks supported by the modified 

last touch instructions. 

Table 2 lists the number of self-invalidations performed 

by last-touch word or block instructions. The results in Table 

2 and Table 3 show that leakage energy was significantly 

reduced for last touch instructions for ñLU-noncontig[uous]ò 

and ñRADIXò [5]. 

 

Table 1: Input data sizes / input file for SPLASH-2 programs [5]  

 
 

Table 2: The number of self-invalidations [5]  

 
 

Table 3: Results of last-touch load/store scheme in L1 cache [5]  

 

B. Error Detection Codes (EDCs) and Error Correction 

Codes (ECCs) 

Energy particles can cause soft errors in cache memories. 

Modern processors employ EDCs and ECCs to counteract 

these errors. Employing these techniques result in a 

significant overhead in terms of area and energy. Farbeh [18] 

proposes a new cache architecture to reduce energy 

consumption and reduce the area overhead that result from 

using EDCs and ECCs in L1 caches. 

Soft errors are a major reason for system failures. They 

can appear in the shape of Single Event Upsets (SEUs) or 

Single Event Multiple Bits Upsets (SEMUs). The 

technological advances mentioned in previous sections 

(improvement of feature size and supply voltage) result in a 

new challenge of handling the increased amount of SEUs 

and SEMUs. In a 40nm feature size, the probability of an 

SEMU caused by a particle strike is about 40%; this 

percentage increases if low power techniques are applied 

[18]. 

The newly proposed architecture called ñPer-Set 

Protected Cache (PSP-Cache)ò makes use of the fact that in a 

set associative L1 cache, data words in all cache ways are 

accessed in parallel. This enables minimization of the 

number of redundant bits without reducing the protection 

capability of EDCs and ECCs [18]. 

Figure 25 displays a conventional cache architecture (left 

side) and the proposed architecture (right side). In a 

conventional cache architecture, data is applied to ñWay 

Selection Logicò.  Further, the output of ñTag Comparison 

Logicò selects data based inputs from the cache.  
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Figure 25: Abstract view of (left) conventional cache architecture and (right) proposed PSP cache architecture [18]  

This data then proceeds to the EDC/ECC 

Checker/Generator Logic and is delivered to the data bus. As 

one can see in the right-hand side of Figure 25, a single code 

gets assigned to the data of all cache ways and the EDC/ECC 

Checker/Generator Logic operates on all accessed data [18]. 

Further, a parity code is applied, which is mostly used to 

protect instruction and data cache data integrity.  For the 

parity code, the number of redundant bits needed to detect a 

specific number of bit errors is independent of the data 

length. Therefore, the number of bits required to protect a 

single cache way is equal to the number of bits required to 

protect all N cache ways [18]. 

ñThe main features of the proposed architecture are as 

follows: 

¶ A negligible modification of cache architecture is 

required to implement PSP-Cache; 

¶ It is applied to the tag array of cache memories in 

addition to data array. Moreover, both D-cache and 

I-cache can take advantages of this architecture; 

¶ It is independent of cache protection granularity. 

Hence, all set-associative caches with per-X-bit 

EDC/ECC protection, when X is between a single 

byte to the cache line length, can be transformed to 

PSP-Cache architecture; 

¶ The efficiency of the proposed architecture 

improves by increasing the cache associatively.ò 

[18] 

This architecture was evaluated in terms of energy 

consumption, area, and reliability. 

1) Energy Consumption and Area Overheads 

Redundant bits are the major source of area and energy 

overheads. The Checker/Generator unitôs contribution to 

both area and energy overhead is smaller than 1% and is 

therefore negligible. The results displayed in Table 4 show, 

that the reduction in the number of redundant bits in PSP-

Cache is proportional to the cache associatively. Required 

redundant bits are reduced by 50%, 75%, 87.5% in 2-way, 4-

way and 8-way associative caches, respectively [18]. 

Figure 26 displays the improvement in energy overhead 

of PSP-Cache for different cache architectures, normalized 

to the baseline cache. An overhead reduction by 49%, 73% 

and 85% for 2-way, 4-way and 8-way set-associative caches 

can be achieved, respectively. 

2) Reliability Analysis 

For this analysis, the effect of the newly introduced 

architecture on SEUs and SEMUs is taken into account. It 

was concluded that the architecture does not hurt the 

capability to detect and correct SEUs or SEMUs, regardless 

of the data length. Thus, it does degrade the protection 

capability of EDC/ECC codes [18]. 

Table 4: Number of redundant bits required to protect cache for 

different cache associatively and protection codes [18]  

 

 

Figure 26: Normalized dynamic energy for baseline cache and 

PSP-Cache [18]  


