

1

A Comprehensive Review of the Challenges and Opportunities Confronting

Cache Memory System Performance

Richard A. Kramer, Mathias Elmlinger, Abhishek Ramamurthy, Siva Pranav Kumar Timmireddy
kramerri@oregonstate.edu, elmlingm@oregonstate.edu, abhisher@oregonstate.edu ,timmires@oregonstate.edu

Oregon State University

Abstract—In computer systems, the cache memory

architecture has a significant impact on both, system

performance and system cost. Further, the gap between

processor performance and cache memory performance

is widening at the disadvantage of the overall system

performance. In this paper, we explore the important

aspects that impact cache memory architecture

performance and cost, including: (1) An overview of

present state-of-the-art cache memory architectures. (2)

We examine the latest advances in cache controllers and

energy management. (3) We explore important aspects of

cache memory organization, including cache mapping,

spatial cache and temporal cache techniques. (4) We

provide an analysis of performance of state-of-the-art

cache memory architecture implementations including

new promising memory technologies. (5) We end by

considering future research areas that may prove

promising in narrowing the performance gap between

cache memory performance and processor performance.

Overall, improvements in cache memory architectures

stand to make a significant impact in unlocking major

improvements in high performance computer

architectures.

Keywords—cache memory architecture; cache data mapping;

prefetching; low-power cache; cache coherency

I. INTRODUCTION

Modern high-performance computer architectures, such

as the one shown in Figure 1, would not exist without cache

memories. Nonetheless, since the first implementations of

cache memories, the imbalance between the processor

system performance and the cache memory system

performance has had a detrimental impact on the overall

system performance [2]. Amazingly, the gap between

processor system performance and cache system

performance was recognized as early as the 1970s [3].

Figure 1: Photograph of Intel Xeon processor 7500 series die

showing cache memories (center) [1]

Unfortunately, sub-optimal cache system performance

still remains as one of the largest limiting factors to optimal

system performance right up to present times. To put this

into prospective, some facts that have been recognized for

over 30 years include [3]:

1) It has been estimated that as processor gate counts

continue to inevitably increase. To be precise: for every

10-fold increase in transistor gate count, the required

memory bandwidth demand increases by 30-fold.

2) The small cache memories within a processor make up

a larger cost impact, by percentage, than the larger

external memories.

3) From the onset of cache memories in the 1970s, it has

been estimated that the required bandwidth to supply

the core processors with instructions and data exceeds

the ability of the cache memory to supply the needed

bandwidth by a factor of 300%.

Further, it is estimated that 50% of power consumption in

advanced computer architectures is a direct result of how

efficient (or inefficient) the cache memory system performs

[4][5][6]. Thus, since the introduction of cache memory

architectures, researchers have and continue to struggle with

the very same topics of cache coherency [7][8][9], write-

through versus write-back [10] and optimal cache size

[3][11][12]. To address the abovementioned limitations,

consistent topics that researchers have heavily researched,

and continue to research, include the following areas [13]:

1) Cache memory access prediction improvements related

to spatial memory access (e.g., locality of data accesses

by address) and temporal memory access (e.g., locality

of data accesses in time).

2) Optimization of cache memory associativity to main

memory. In other words, finding the optimal methods

to map cache memory to main memory.

3) The development of intelligent software compilers to

attempt to improve cache accesses based on prediction

(e.g., determining via software compilers, how likely

certain memory addresses will be accessed).

4) Improvements in the mapping of L1 cache memory

contents to that of L2 cache memory contents.

5) Advancement in the performance of mapping cache

memory to main memory via the TLB (Translation

Lookaside Buffer).

6) Hardware prefetching enhancements to better supply

optimal memory prefetcher performance.

II. OBJECTIVES AND CONTRIBUTIONS

The objective of this paper is to take the reader to the

forefront of the battle to improve the imbalance between

processor system performance and cache system

mailto:kramerri@oregonstate.edu
mailto:elmlingm@oregonstate.edu
mailto:abhisher@oregonstate.edu
mailto:timmires@oregonstate.edu

2

performance. Specifically, we focus in a number of core

areas that are further discussed below.

In Section 3 – “Advances in Cache Data Management:

Prefetching, Bandwidth Management, Scheduling, and Data

Placement”, we point to the most recent research related to

improving how cache memory is used. We include a review

of novel advancements in cache prefetching, improvements

in cache memory bandwidth utilization, and optimizations of

data placement within the cache memory system

[14][15][16][17]. Given the fact that cache memory to

processor system bandwidth is a major bottleneck, we point

to new research to utilize valuable bandwidth resources in

the absolute most efficient manner.

1) As an example, we review promising techniques to

efficiently1 learn and intelligently associate an array of

different types of prefetchers to the software that is

being executed (e.g., selecting the best prefetcher based

on the application(s) being run). Based on this

technique, the solution offers a worst case 1.4% to

18.7% improvement over the best present day

techniques, while at the same time, using less memory

and logic overhead [14].

2) As yet another example, based on intelligent thread and

data placement schemes, we point to research that

provides a 46% increase in cache memory system

performance as compared to present day NUCA (Non-

Uniform Cache Architectures) [15].

In Section 4 – “Leading-Edge Hardware Implementations

and Opportunities”, we point to modern day challenges and

potential breakthroughs related to the considerable impact

that cache memories have on system power requirements,

access speed, fault tolerance and reliability [4][5][6][18].

1) We are intrigued and examine advances that have

allowed low power battery operated devices to employ

cache based systems. Such advances offer significantly

low power consumption, yet provide superior cache

performance [4][5].

2) We further evaluate and provide insight into new

opportunities to speed up cache memory accesses by as

much as 11.3% (and an encouraging 8.6% speed up on

average) when combined with present day NUAT

(Non-Uniform Access Time) memory [6].

In Section 5 – “Special Topics in Cache Memory

Architectures”, we discuss advances in the overall processor

and cache memory core architecture [19][20][21][22][23].

1) We examine the concept of “cloning” - a technique to

simulate actual workloads of proprietary programs to

find optimal cache memory architectures that can then

be applied to actual real-world applications. By doing

so, the processor / cache memory core architecture can

more easily be evaluated and then optimized [19].

2) We point to promising new architectures. For example,

we look to new breakthroughs in processor system stall

avoidance, providing a 6% improvement on a 4-core

processor system [23].

3) We look to advances that proactively and predicatively

identify cache contents that will not be used in the

1 Efficiency in both memory space and

hardware/logic/computational complexity implementation.

future (e.g., dead blocks) so that the unused cache

content can be replaced by relevant content, thus

reducing wasted cache energy by 20% [21].

In Section 6 – “Conclusion”, we summarize our findings

and provide a case study of taking cache memory

architecture research from “concept to reality” via the Intel

Xeon Haswell processor [24]. We also consider new

frontiers for future work including optical cache memory

architectures [25].

III. ADVANCES IN CACHE DATA MANAGEMENT:

PREFETCHING, BANDWIDTH MANAGEMENT,

SCHEDULING AND DATA PLACEMENT

Advances in cache data management techniques offer a

wide range of exciting opportunities to improve overall

cache memory system performance. In this section, we

discuss advances related to cache data management

including:

• Advanced prefetching that employs a unique way to

monitor and then select the optimal prefetcher.

• Bandwidth management techniques based on the

prediction of bandwidth requirements for multiple

threads of software running on multiple processor

cores.

• Cache data scheduling, that creates virtual cache

memories that transcend across multiple threaded

applications and even multiple processors.

• Unique cache data placement management

techniques entailing algorithms and architectures

used to determine where to store data in relation to

SRAM and STT-RAM (Spin-Transfer Torque

RAM).

A. Advanced Prefetching

Cache Prefetching is a Technique used in modern day

computer processors to improve the execution speed by

prefetching instructions/data from main memory and

supplying the instructions to cache memory. Modern day

computer processors use high speed cache memory, whereas

fetching of instructions and data for processing is much

faster from cache memory as compared to accessing the

same from main memory. There are multiple techniques to

implement cache prefetching, and the techniques are broadly

classified under: (1) hardware based and (2) software based

implementations. In hardware based prefetching, there is

dedicated hardware that monitors the stream of

instructions/data being requested by the program under

execution. The hardware prefetches the next set of

data/instructions that the program being executed might

request. Figure 2 is an example of a hardware based

prefetching technique (Stream Buffer) as proposed by

Norman Jouppi [26].

In contrast to hardware prefetching, for software based

prefetching, the prefetching mechanism is applied during the

compilation time of the program. Compiler based

prefetching techniques are more widely adopted in the case

of loops that contain a large number of iterations. At

compilation time, the compiler predicts the future cache

misses and inserts a prefetch instruction based on the miss

penalty and execution time of the instruction. Through

compiler based prefetching techniques, run time true data

3

dependency issues cannot be resolved during compilation

time. In this section, we will discuss the recent trends in

cache prefetching techniques which involves hardware,

software and a combination of both mechanisms involved.

Figure 2: Stream buffer proposed by Jouppi [26] [27]

B. The Sandbox Prefetching Technique

The sandbox prefetching technique is based on the use of

a Bloom filter. The Bloom filter was proposed by Burton

Howard Bloom in 1970. The Bloom filter is a probabilistic

model to test whether a data element is a member of a set. A

query to a Bloom filter returns “possibly in set” if the

element is present or “definitely not in set” if the element is

not present in the set.

In the paper “Sandbox Prefetching: Safe Run-Time

Evaluation of Aggressive Prefetchers”, Pugsley et al. [14]

presents a hardware base technique which provides features

of aggressive prefetching, yet avoids bandwidth and cache

capacity wastage due to aggressive prefetching. The key

feature of the sandbox prefetching technique is the reduced

latency overhead in prefetching by using a Bloom Filter

among other methods. The sandbox prefetching technique

uses the concept of global pattern confirmation and

immediate prefetch action, thereby enabling better execution

performance [14].

Figure 3: Figure showing sandbox prefetcher architecture [14]

Figure 3 shows the placement of the sandbox unit within

the memory hierarchy. As shown in Figure 3, the sandbox

unit doesn’t impact normal cache actions. The sandbox

prefetch mechanism proposed by Pugsley et al. [14] has a

separate sandbox prefetch unit and a sandbox unit. The

sandbox technique begins by monitoring multiple prefetcher

algorithms, seeking to find the most effective prefetcher

algorithm. The sandbox unit keeps the score (hits versus

misses) of candidate prefetchers, based on the outcome of

individual cache lines being a hit or a miss. Each time there

is a cache access, the corresponding prefetcher candidate

score is incremented based on a hit. Once the score of a

candidate prefetcher crosses a threshold, the prefetch

mechanism control is taken over by sandbox prefetch unit.

Figure 4 shows the sandbox prefetching actions for each L2

access [14]. Sandbox prefetching maintains a set of 16

candidate prefetchers and each candidate is evaluated in a

round-robin fashion [14].

Figure 4: Sandbox prefetching action on each L2 access [14]

Figure 5 (see next page) shows the performance of

SandBox Prefetching (SBP), normalized to a no-prefetch

baseline. The sandbox technique is compared with No

Prefetching (No PF), Feedback Directed Prefetching (FDP)

and Address Map Pattern Matching (AMPM). Sandbox

prefetching provides better performance when compared to

the other prefetching mechanisms [14].

C. Bandwidth Shifting

Current modern day microprocessors have multiple cores

and run multiple threads concurrently. Novel techniques

have been proposed, with the idea of dynamically assigning

needed bandwidth to applications based on the prefetch

efficiency of each thread.

Increased in Multicore System Efficiency Through Intelligent

Bandwidth Shifting

Jimnez et al. [16] introduces a technique that increases

multicore system efficiency through intelligent bandwidth

shifting. Data prefetching hides memory access latency, but

not all of the prefetched data is accurately fetched, thus

reducing the performance of the system. The technique

employed by Jimnez et al. provides an efficient software

mechanism for dynamically assigning memory bandwidth

for each thread, based on the predicted prefetch efficiency.

The technique assures backward compatibility [16]. The

technique further provides the following characteristics:

• Prefetch based bandwidth shifting to characterize

performance.

• Metrics to estimate prefetch usefulness.

• Novel bandwidth shifting mechanisms to increase

performance.

• Evaluation of bandwidth shifting.

4

Figure 5: Performance normalized to no-prefetch baseline [14]

To expand, Figure 7 shows the throughput and

bandwidth consumption of a subset of benchmarks defined

in the SPEC CPU2006 benchmark specification. Figure 7,

indicates Deep, Shallow and OFF regions. In the Deep

region, the prefetcher uses the longest distance available for

prefetching. The Shallow region uses the shortest distance

for prefetching. Lastly, the OFF region refers to the

prefetching action being turned off. Figure 7 clearly indicates

that when more than 16 threads are being used, the

bandwidth usage and performance saturates. All of the

performance benchmarks are evaluated on an IBM POWER7

machine. Jimnez et al. [16] states that the benchmark results

are not exclusive to the IBM POWER7 machine used by

Jimnez et al. The efficiency of prefetching applications

varies, depending on the memory access pattern and the

availability of bandwidth. Jimnez et al. [16] also states that

there were no severe impacts observed when changing to

aggressive prefetch actions. The proposed technique of

bandwidth shifting uses only DEEP and OFF settings for the

prefetching mechanism [16].

The bandwidth shifting algorithm proposed by Jimnez et

al. [16] uses an iterative approach. Initially the configuration

is set to the most aggressive prefetch setting. Next, the

algorithm computes the usefulness of prefetching an

instruction for each thread and tabulates the result. The

evaluation of prefetch usefulness is done by frequently

turning on and off the prefetching for each thread and then

measuring the Instruction Per Cycle (IPC) and bandwidth

usage under both the on and off configurations. Figure 6

shows the base implementation of the algorithm [16].

The base algorithm shown in Figure 6 introduces a

problem: there is a lack of hardware resources while high

Prefetch Usefulness (PU) threads are running on the system

due to the limited number of prefetch streams that can be

allocated. To overcome this problem, as shown in Figure 8,

Jimenez et al. [16] introduced a modified base algorithm

which increases performance by 33% when compared to the

performance of the algorithm shown in Figure 6 [16].

Figure 6: Base bandwidth Shifting algorithm [16]

Figure 7: Throughout and memory bandwidth consumption characteristics for a subset of benchmarks [16]

5

Figure 8: Modified base algorithm [16]

In the modified algorithm shown in Figure 8, the initial

mechanism is the same as that of the base algorithm as

shown in Figure 6. A number of additional steps are also

added as follows:

• Step 1: Measuring system performance by turning

“off” the prefetching for a thread.

• Step 2: Testing if there was a positive impact on the

system when the prefetch mechanism is turned

“off” for a given thread.

• Step 3: If there was improvement by turning “off”

prefetching for a given thread, a decision to turn

“on” or “off” the prefetch action for a given thread

will be considered again in the next iteration.

Figure 9 illustrates the positive effect of the bandwidth

shifting algorithm on system performance. Figure 9 plots a

function of the prefetch friendly algorithm “bwaves” (which

we assign the value “z” to the number of simultaneous thread

instances running) and the prefetch unfriendly algorithm

“omnetpp” (which we assign the value “x” to the number of

simultaneous thread instances running) as benchmarks.

Specifically, Figure 9 shows the amount of speedup for 32

processes running simultaneously, with the x-axis

representing the number of unfriendly algorithm “omnetpp”

simultaneous thread instances running (“x”) as a function of

the number of friendly algorithm “bwaves” simultaneous

thread instances running (“z”). Thus, x + y = 32 [16].

Figure 9: Effect on bandwidth shifting on system performance with

prefetch efficient (bwaves) and inefficient (omnetpp) threads [16]

D. Scaling Cache Hierarchies Through Computation and

Data Co-Scheduling

Today, Non-Uniform Cache Architecture (NUCA) is the

most widely used method to extract improved performance

from cache memory systems. Advanced techniques of

NUCA include: (1) Reactive Non-Uniform Cache

Architecture (R-NUCA) and (2) Static Non-Uniform Cache

Architecture (S-NUCA). Recently, better techniques that

further improve R-NUCA and S-NUCA have been proposed.

Such improvements provide better cache memory

management and improved thread scheduling to derive better

system performance. One such technique is referred to

Computation and Data Co-Scheduling (CDCS) [15].

Computation and Data Co-Scheduling technique (CDCS)

One example of cache memory scheduling is disclosed in

the paper “Scaling Distributed Cache Hierarchies through

Computation and Data Co-Scheduling” by Beckman et al.

[15]. Beckman et al. proposed a technique called

Computation and Data Co-Scheduling (CDCS), a technique

that relates to the placement of threads and data using

distributed shared caches in a multiprocessor environment.

The main contributions the Beckman et al. [15] paper are as

follows:

• A novel thread and data placement scheme that

considers both data and access intensity by threads

across multiprocessor tiles.

• An enhanced design of a geometric sampling curve

monitors that scales within a very large NUCA.

• Hardware that enables incremental reconfiguration

of NUCA caches.

The CDCS technique then tags data to the virtual cache

using virtual cache “ids” (IDs). For every L2 level cache

miss using the VC (Virtual Cache) “id”, CDCS determines

where the cache line resides in the memory subsystem. A

Virtual Translation Buffer, referred to as a “VTB”, as shown

in Figure 10, stores the configuration for all virtual cache

memory groups that a given executing thread can access.

Virtual cache configurations are periodically changed by

CDCS software (every 25ms); changing both the bank and

partition sizes on the fly during runtime, based on how data

is accessed by the executing threads. A block diagram of

how the virtual cache is reconfigured is shown in Figure 10.

Figure 10: An example of LLC access using CDCS [15]

6

Figure 11: CDCS implementation with 64 tile CMP [15]

Figure 11 shows the hardware black box hardware

implementation of CDCS. Each tile has a core and a slice of

Last Level Cache (LLC). An on-chip network topology

establishes connection between a tile and the memory

controllers that reside at the edges.

CDCS is based on NUCA methodology and allows

software to divide each cache bank into multiple partitions.

Collections of portioned caches are grouped and are made

visible to software threads as a single cache. The grouping of

the caches provides the software with flexibility to define

multiple virtual caches and to configure them into different

sizes of virtual cache memory [15].

Figure 12 shows the thread and data placement under R-

NUCA techniques, where thread private data is stored for

threads in the processor’s local memory bank. Figure 13

shows how the thread and data is placed using the CDCS

technique provides a 400% higher speed-up over the R-

NUCA technique [15].

Figure 12: R-NUCA workload organization schemes on 36 tile

CMP [15]

CDCS software provides different levels of virtual

caches. During execution, each thread is provided with a

thread private cache at the OS-level. Common data between

the threads of the same process are placed in a process

private cache, and common data between the processes are

placed in a global virtual cache. Based on these techniques,

faster access to data is provided and cache pollution is

reduced. The CDCS technique provides a 46% increase in

performance when compared other NUCA techniques, and

provides 36% better energy efficiency when compared to S-

NUCA [15].

Figure 13: CDCS workload organization schemes on 36 tile CMP

[15]

E. Adaptive Placement Policies for Data in Cache Memory

Systems

Another leading area of research is the intelligent

placement of cache memory contents in differing types of

memory within cache memory systems and main memory.

For example, a hybrid of cache memory system consisting of

DRAM, SRAM and even STT-RAM.

An Adaptive Placement and Migration Policy for an STT-

RAM Based Hybrid Cache System

One such paper that considers new data placement

polices for data blocks in cache memory systems is the paper

“Adaptive Placement and Migration Policy for an STT-

RAM-Based Hybrid Cache” by Wang et al. [17]. \Wang et

al. [17] proposes an Adaptive block Placement and

Migration policy (APM) for hybrid caches. The technique

proposed by Wang et al. places the block in either STT-

RAM (Spin-Transfer Torque – RAM) or SRAM, based on

an adaptive placement and migration policy algorithm. The

technique proposed by Wang et al. combines the advantages

of low leakage power and high packing density offered by

STT-RAM with the low write overhead of SRAM [17].

To expand, Wang et al. categorizes LLC cache accesses

into three distinct classes: (1) core-write, (2) prefetch-write

and (3) demand-write. Turning to (1) - core-write, a core-

write is a write from the core to the LLC. For a write through

core cache, a core-write entails directly writing from the core

7

through to the LLC. For a write-back core cache, a core-

write entails evicting dirty data from the core cache and a

write back to the LLC. For (2) - prefetch-write, a prefetch-

write is a write replacement of the block from LLC caused

by a prefetch miss. For (3) - demand-write, a demand-write

is a write block replacement from LLC caused by a demand

miss. The technique proposed by Wang et al. [17] is based

on block replacement if the request is initiated by a write

access. Wang et al. [17] introduces an intelligent block

placement policy as follows:

• SRAM should be used for the majority of the write

actions, thus avoiding write overhead involved in

STT-RAM.

• Frequently used blocks should be placed in LLC to

achieve reduced memory access latency, reduced

overhead, and less complexity within the overall

design.

• Block placement is often initiated by a write access

to the LLC which Wang et al. further

subcategorizes to be either a (1) prefetch-write, (2)

core-write or (3) demand write as discussed above

[17].

Figure 14: Distribution of LLC write accesses. Each type of write

access accounts for a significant fraction of total write accesses

[17]

Figure 14 shows the breakdown of block placement for

(1) core-write, (2) prefetch-write and (3) demand-write to the

LLC. Wang et al. [17] further teaches two types of ranges:

(1) read-range and (2) depth-range, which is further

described as follows:

• Read-Range: The read-range is a property of a

cache block that fills the LLC by a demand-write or

prefetch-write request. It is the largest interval

between consecutive reads of the block from the

time it is placed into the LLC until the time it is

evicted [17].

• Depth-range: The depth-range is a property of a

core-write access. It is the largest interval between

accesses to the block from the current core-write

access until the next core-write access to the same

block. The “depth” refers to how deep the block

descends into the LRU stack before it is accessed

again [17].

In Figure 15, “Ra” represents the Read block “a” and

“Wa” represents the Write block “a”. The distance between

successive block reads is referred to as “read-range” as

discussed above. The distance between a write access to that

of reading the same data is referred to as “depth-range” as

discussed above. “Wa” equals 0 and represents an evicted

block from cache, e.g., the least used data from cache is

kicked out from the cache memory. Read-range/depth-range

is further classified as follows [17]:

• Zero-read/depth-range: Data is filled into the LLC

by a prefetch or demand request/core-write request,

and it is never read/written to again before it is

evicted.

• Immediate-read/depth-range: The read/depth-range

“I” (which is further set to be smaller than a

parameter “m”, where m = 2 is the number of

SRAM ways in the STT-RAM/SRAM hybrid cache

configuration).

• Distant-read/depth-range: The read/depth-range is

larger than m = 2 and at most, the associatively of

the cache set which is 16 in STT-RAM/SRAM

configuration.

Figure 15: Example illustrating read-range and depth-range [17]

The technique proposed by Wang et al. [17] uses the

read-range to analyze the access patterns of LLC. Figure 16

shows each access pattern and each category is further

classified based on read-range/depth-range. A summary of

the results are as follows:

• Zero-read/depth-range corresponds to 26% of all

prefetches on average. For prefetch-writes, because

the category is never used until a miss occurs and

then a block is evicted from cache, the prefetched

block should be placed in SRAM as to avoid the

write overhead of STT-RAM.

• Immediate-read-range corresponds to 56.9% on

average. The data associated with this category

should likewise be placed in SRAM to provide fast

access for immediate use. Using SRAM for this

category mitigates STT-RAM involvement in

eviction once the cache block is dead.

• Distant-read corresponds to 17.5% on average. For

this category, data should be placed in STT-RAM

to make use of large capacity to avoid cache misses.

In the proposed design by Wang et al. for core-write

access misses, the data is directly written back to the main

memory. Zero-read-range blocks should be bypassed from

cache because the data will not be used except for eviction

from cache of a dead block. Thus, bypassing zero-read-

range blocks will reduce the write operations to LLC.

8

Figure 16: The distribution of access pattern of each type of LLC write access [17]

Figure 17: Flow chart of the adaptive block placement and migration mechanism (errors as shown in the original) [17]

Figure 17 shows the flow chart of the proposed design.

Each block is associated with a prediction bit indicating

whether the block is dead. On a cache miss the prefetched

data is placed into the SRAM; and the prediction bit that

predicts if the block is dead is set to 1 (e.g., it is assumed

dead on arrival). An access bit pattern predictor, predicts

whether the block in SRAM is dead. The proposed scheme

reduces the overhead of STT-RAM by using the following

schemes [17]:

• By bypassing dead on arrival blocks.

• By introducing an SRAM line filter to filter write

operations caused by inaccurate and immediate-

read-range prefetch requests.

• By placing frequently used core-write blocks in

SRAM.

The access pattern predictor makes a prediction in the

following three conditions: (1) when a core-write request is a

hit within the STT-RAM lines, the write burst prediction

table will be accessed to predict whether it is a write burst

request; (2) for each read hit request within the SRAM lines,

the dead block prediction table will be accessed to predict

whether it is a dead block; (3) on a demand-write request, the

dead block prediction table will be accessed to predict

whether the request is a dead-on-arrival block request [17].

Overall, the block placement technique proposed

achieves higher performance by placing distant-read-range

blocks in STT-RAM and by bypassing the zero-read-range

cache lines in order to avoid write overhead; SRAM

provides better efficiency in evicting inaccurately fetched

data blocks.

IV. LEADING-EDGE HARDWARE IMPLEMENTATIONS

AND OPPORTUNITIES

Given the steadily growing market for battery-powered

devices (e.g., mobile phones or wireless embedded sensor

networked devices), energy efficiency has become a crucial

factor in the development process. Advances in technology

have and will further lead to even smaller device sizes,

driven by voltages as small as possible. Given these

advances, the system’s overall energy dissipation will be

influenced by up to 50% by the cache. New techniques have

been proposed that optimize already existing architectures to

minimize the overall power consumption in order to provide

longer battery life, mitigate the design limiting effects of

temperature, and provide better performance [4][5][18].

9

On-chip cache memories make up a large fraction of the

overall chips size and therefore play a significant role in the

overall power consumption of the system. Recent research

has shown that the following factors influence the energy

consumption by a significant amount [4][5][18]: (1) static

leakage current, especially in multi-port architectures, (2) the

use of Error Detection Codes (EDC) and (3) the use of Error

Correction Codes (ECC). Additionally, a new concept that

utilizes the charge leakage of a cell to improve access

latency and ultimately also improves the energy efficiency is

introduced. The following sub-sections provide a brief

introduction into each of these areas.

A. Leakage Current

Two types of leakage currents mainly contribute to the

overall cache leakage current: (1) cell leakage current and (2)

bit line leakage current. Further, there are a number of

factors that increase leakage current, including the use of

multi-port caches and the fact that leakage current scales

proportionally with the area of the circuit [4]. In the

following, we explore two different promising approaches to

reduce the cache memory power dissipation, namely,

Dynamic Memory Configuration and Software Self-

Invalidation and Data Compression.

1) Dynamic Memory Configuration

Figure 18 and Figure 19 show a six transistor single-port

and dual-port SRAM cell, respectively. The additional word

lines needed to access transistors T7 and T8 almost double

the silicon area of the single-port configuration. Keeping the

bit lines high, as well as pre-charging, contributes

significantly to the overall power dissipation [4].

Figure 18: Single-port SRAM cell [4]

Figure 19: dual-port SRAM cell [4]

The following equations describe the leakage currents

per cell displayed in Figure 18 and Figure 19 [4]:

𝐼𝑠𝑖𝑛𝑔𝑙𝑒 𝑝𝑜𝑟𝑡 = 𝐼𝑇1 + 𝐼𝑇5 + 𝐼𝑇4

𝐼𝑑𝑢𝑎𝑙 𝑝𝑜𝑟𝑡 = 𝐼𝑇1 + 𝐼𝑇5 + 𝐼𝑇4 + 𝑇7

Previously used techniques to reduce leakage current

were based on a fixed bank size and employed duplicated

word and bit lines at the expense of either moderate

performance degradation or a large area overhead. Bajwa et

al. [4] proposes a new cache architecture using isolation

nodes to partition a cache memory block into two virtually

independent sections that also employ real-time access of

addresses via multiple ports.

Figure 20 shows the proposed placement of the Isolation

Control Line (ICL) and isolation node on the corresponding

bit lines to divide the block into an upper port and lower

port, respectively. This approach enables dual-port access

without the need of a second pair of bit lines and thus

reduces the leakage current and the silicon area needed. Even

though additional ICLs are placed every n word lines, Bajwa

et al. [4] states that the performance degradation for a value

of n = 8 poses no negative effects. The statistical pattern of

accesses of addresses of targeted applications determines the

overall placement of the nodes.

Figure 20: ICL and Isolation node placement [4]

The efficiency of this dynamically partitioning is based

on an applied algorithm to determine the ICL and isolation

node placement. Considerations that go into determining the

optimal algorithm include: delay, power dissipation and the

overall complexity of the proposed algorithm. Bajwa et al.

[4] evaluates two algorithms: (1) an algorithm for optimal

partitioning that minimizes bit line latency and power

dissipation and (2) an algorithm that does not require a new

partition for every memory access. The pseudo code for

algorithm (1) is as follows:

10

 addr(A) <1:n>; addr(B) <1:n>;

 where adr(A) = i > addr(b) = j;

 if i = j + 1 return ICL(j)

 else return ICL(j) and ICL(i-1)

The pseudo code for algorithm (2) is as follows:

 addr(A) <1:n>; addr(B) <1:n>;

where adr(A) = i > addr(b) = j;

k = current ICL;

if (j ≤ k < i) return NUL (no new DMP);

else return (j + (i-j)/2);

Applying the above described dynamic memory

configuration reduces the silicon area that is needed because

no additional bit lines and pass transistors are needed. This

results in a reduced leakage current and reduced bit line pre-

charge current by a factor of 50% of the value of a typical

hardwired multi-port memory. Lastly, the dynamic

configuration also introduces less latency due to shorter

active bit lines. The leakage current of a memory core with

N rows and M columns can now be calculated using the

following formula:

𝐼𝑛𝑒𝑤 =
𝑁

2
𝑀(𝐼𝑇1 + 𝐼𝑇5 + 𝐼𝑇4 + 𝑇7)

A paper entitled “Cache Memory Architecture for

Leakage Energy Reduction” by Tanaka et al. [5] states that

future high performance processors need even larger

amounts of cache to bridge the speed gap between the

processor and the external memory. Given the increase in

cache size, it is said that energy dissipation in cache memory

makes up 50% of the total energy dissipation of the

processor system. Higher transistor counts and increased

clock frequency result in decreased battery lifetime and

higher temperature. To ensure performance improvement of

future microprocessors, it is necessary to improve the energy

efficiency of cache memory systems.

2) Software Self-Invalidation and Data Compression

Tanaka et al. [5] introduces a low-energy cache memory

hierarchy for on-chip multiprocessors, which exploits gated-

Vdd transistors and explicit gated-Vdd control. Two

mechanisms are introduced: (1) leakage energy reduction by

software self-invalidation and (2) leakage energy reduction

by data compression. The memory hierarchy is displayed in

Figure 21. It consists of L1 instruction and data caches, a

write buffer, a L2 unified write-back cache on chip, and an

external main memory. The compressor and decompressor

blocks are used to exploit energy leakage reduction as

explained later.

Cache blocks can become invalid if they receive an

invalidation request. Turning off these invalid blocks using a

gated-Vdd results in significant energy savings. In addition

to this method, a self-invalidation mechanism to further

increase the number of blocks that can be turned off is

applied. This mechanism makes use of a modified load/store

instruction called “last-touch load/store”. In addition to the

conventional load/store function, the new instruction can

validate cache blocks after accessing them.

Figure 21: Cache memory hierarchy [5]

The invalidation is based on two conditions: (1) a cache

block is invalidated at the same time as it is accessed, and (2)

a word is marked when it is accessed. The cache block is

invalidated when all words in the block get marked [5].

To enable the abovementioned improvements, slight

modifications to the conventional L1 cache memory

structure are necessary. Last-touch flag bits are added as a

part of the L1 cache tag information. Each flag corresponds

to a word in the block. Figure 22 illustrates the memory

structure for a 16-byte block made up of four words each.

Tanaka et al. states that “When a last-touch-word load/store

instruction is executed the corresponding flag bit is cleared.

On the other hand, when a last-touch-block load or store

instruction is executed, all flag bits are cleared (as depicted

in the second row in the figure). Then, a block is invalidated

when all the flag bits are cleared.” [5].

The gated-Vdd design is implemented as shown in Figure

23. It is worth mentioning that this figure is conceptual since

the address tag and data parts of the block relate to one or

more gated-Vdd transistors.

Figure 22: L1 cache memory structure [5]

The data compression technique employs data

compression thresholds of ¾, ½ and ¼. Compressed blocks

are stored in the L2 cache and the remaining space is turned

off using gated-Vdd transistors. The overhead of

compression and decompression is negligible because the L2

cache access frequency is not high. In general, a compression

ratio as small as possible is desirable, because data

11

compression as a whole results in higher processing cost,

larger chip area, and longer latency. These factors are

important when considering the tradeoffs between cost,

performance, and the amount of energy conserved [5].

Figure 23: (conceptual) L1 gated-Vdd control [5]

The tag information for the L2 cache is shown in Figure

24. “c1” and “c0” correspond to the compression thresholds

used above. A combination of “00” equals no compression,

“01” equals ¾ compression, “10” equals ½ and “11” equals

¼ compression (of the original size of the data). Three

transistors are needed to support this feature, as shown [5].

Figure 24: L2 gated-Vdd control [5]

Five kernel programs in the SPLASH-2 suite were used

for the evaluation of the software invalidation technique.

Table 1 contains the input data size and input file. Table 3

displays the simulation results, normalized to “base”, which

refers to an execution without gated-Vdd control. “inv.off” is

with gated-Vdd control of invalid blocks and “last-touch” is

the execution with invalid blocks supported by the modified

last touch instructions.

Table 2 lists the number of self-invalidations performed

by last-touch word or block instructions. The results in Table

2 and Table 3 show that leakage energy was significantly

reduced for last touch instructions for “LU-noncontig[uous]”

and “RADIX” [5].

Table 1: Input data sizes / input file for SPLASH-2 programs [5]

Table 2: The number of self-invalidations [5]

Table 3: Results of last-touch load/store scheme in L1 cache [5]

B. Error Detection Codes (EDCs) and Error Correction

Codes (ECCs)

Energy particles can cause soft errors in cache memories.

Modern processors employ EDCs and ECCs to counteract

these errors. Employing these techniques result in a

significant overhead in terms of area and energy. Farbeh [18]

proposes a new cache architecture to reduce energy

consumption and reduce the area overhead that result from

using EDCs and ECCs in L1 caches.

Soft errors are a major reason for system failures. They

can appear in the shape of Single Event Upsets (SEUs) or

Single Event Multiple Bits Upsets (SEMUs). The

technological advances mentioned in previous sections

(improvement of feature size and supply voltage) result in a

new challenge of handling the increased amount of SEUs

and SEMUs. In a 40nm feature size, the probability of an

SEMU caused by a particle strike is about 40%; this

percentage increases if low power techniques are applied

[18].

The newly proposed architecture called “Per-Set

Protected Cache (PSP-Cache)” makes use of the fact that in a

set associative L1 cache, data words in all cache ways are

accessed in parallel. This enables minimization of the

number of redundant bits without reducing the protection

capability of EDCs and ECCs [18].

Figure 25 displays a conventional cache architecture (left

side) and the proposed architecture (right side). In a

conventional cache architecture, data is applied to “Way

Selection Logic”. Further, the output of “Tag Comparison

Logic” selects data based inputs from the cache.

12

Figure 25: Abstract view of (left) conventional cache architecture and (right) proposed PSP cache architecture [18]

This data then proceeds to the EDC/ECC

Checker/Generator Logic and is delivered to the data bus. As

one can see in the right-hand side of Figure 25, a single code

gets assigned to the data of all cache ways and the EDC/ECC

Checker/Generator Logic operates on all accessed data [18].

Further, a parity code is applied, which is mostly used to

protect instruction and data cache data integrity. For the

parity code, the number of redundant bits needed to detect a

specific number of bit errors is independent of the data

length. Therefore, the number of bits required to protect a

single cache way is equal to the number of bits required to

protect all N cache ways [18].

“The main features of the proposed architecture are as

follows:

• A negligible modification of cache architecture is

required to implement PSP-Cache;

• It is applied to the tag array of cache memories in

addition to data array. Moreover, both D-cache and

I-cache can take advantages of this architecture;

• It is independent of cache protection granularity.

Hence, all set-associative caches with per-X-bit

EDC/ECC protection, when X is between a single

byte to the cache line length, can be transformed to

PSP-Cache architecture;

• The efficiency of the proposed architecture

improves by increasing the cache associatively.”

[18]

This architecture was evaluated in terms of energy

consumption, area, and reliability.

1) Energy Consumption and Area Overheads

Redundant bits are the major source of area and energy

overheads. The Checker/Generator unit’s contribution to

both area and energy overhead is smaller than 1% and is

therefore negligible. The results displayed in Table 4 show,

that the reduction in the number of redundant bits in PSP-

Cache is proportional to the cache associatively. Required

redundant bits are reduced by 50%, 75%, 87.5% in 2-way, 4-

way and 8-way associative caches, respectively [18].

Figure 26 displays the improvement in energy overhead

of PSP-Cache for different cache architectures, normalized

to the baseline cache. An overhead reduction by 49%, 73%

and 85% for 2-way, 4-way and 8-way set-associative caches

can be achieved, respectively.

2) Reliability Analysis

For this analysis, the effect of the newly introduced

architecture on SEUs and SEMUs is taken into account. It

was concluded that the architecture does not hurt the

capability to detect and correct SEUs or SEMUs, regardless

of the data length. Thus, it does degrade the protection

capability of EDC/ECC codes [18].

Table 4: Number of redundant bits required to protect cache for

different cache associatively and protection codes [18]

Figure 26: Normalized dynamic energy for baseline cache and

PSP-Cache [18]

13

C. Exploiting Row Access Locality

DRAM is commonly used as the main memory of

computer systems but its access latency continues to be a

critical bottleneck for system performance. In the paper

“ChargeCache: Reducing DRAM Latency by Exploiting

Row Access Locality”, Hassan et al. [6] introduces a new

concept called ChargeCache. The goal of ChargeCache is to

reduce the average DRAM access latency time without

modifying existing chips, thus improving overall main

memory and cache memory performance. The general

principle is to keep track of the amount of charge of a

recently accessed row and to use this information to

determine the timing in which a row can be accessed [6].

The architecture mainly dictates the latency of DRAM,

specifically the length of the bit line. Each pair of transistors

is connected to sense amplifiers through a bit line as

illustrated in Figure 27.

Figure 27: DRAM Sub-Array (left) and DRAM cell (right) [5]

Sense amplifiers are heavy in terms of cost; thus, many

DRAM cells are typically connected to the same bit line. The

additional length results in an increase in resistance and

parasitic capacitance on the path between the cell and the

sense amplifier, thus higher latency. To achieve an

improvement in performance and energy efficiency, two

major observations are exploited [6]:

• Due to bank conflicts, many applications tend to

access rows that were recently closed. This form of

temporal locality is referred to as Row Level

Temporal Locality (RLTL). The important outcome

of this observation is that a DRAM row remains in

a highly-charged state when accessed for the second

time within a short interval.

• DRAM cells leak charge over time. The charge is

either replenished by an access to the row or a

refresh operation. The current amount of charge

determines the operation time of the sense amplifier

and therefore dictates the access latency. Hence,

recently replenished cells can be accessed using a

significantly lower access latency than the case

when the cell has less charge.

ChargeCache is a new mechanism that exploits these

observations. The main idea is to keep track of the addresses

of recently accessed DRAM rows and provide accesses to

these with a latency that depends on their level of charge.

The memory controller maintains a small table that contains

the addresses of recently accessed rows. The memory

controller then checks this table before accessing a new row

to check if the address of the row is present. A hit in this

sense means that the row can be accessed with lower latency;

otherwise regular latency timing occurs. This process

requires a mechanism to periodically invalidate entries from

the table so that the table only contains addresses of cells

with a high amount of charge [6].

Figure 29 illustrates the steps needed to transfer data

from a DRAM cell to the sense amplifier and their mapping

to DRAM commands. A detailed explanation can be found

in [6]. States 4 and 5 refer to the fully recharged state of the

cell after an access. State 6 represents the leakage of charge.

If the cell has not been refreshed for a certain amount of

time, thus has lost too much charge, its state may be flipped

in the table. To avoid these cases, the controller refreshes

DRAM cells within a certain interval, the so-called refresh

interval. As stated earlier, a low amount of charge

corresponds to a longer access latency. This means, that the

sense amplifier takes longer to reach states 3 and 4. If the

charge is high, the perturbation caused by the cell on the bit

line voltage is high; the cell can be accessed earlier because

it takes a shorter time to reach states 3 and 4. This enables a

reduction of the time intervals tRCD and tRAS, as shown in

Figure 29.

ChargeCache is implemented by adding (two main

components to the memory controller): a tag-only cache that

stores the addresses of the highly-charged rows and a set of

two counters to invalidate entries from the table. An

overview of these components is shown in Figure 28.

Figure 28: Components of the ChargeCache Mechanism [6]

To expand, if a PRE command is issued to a bank, the

memory controller stores the address of the row that was

activated in the table. Some interfaces allow the memory

controller to pre-charge all banks with a single command. In

this case, all addresses are inserted into the table. The table

itself is finite, therefore the oldest entries may be evicted if

no more space is available and new row addresses are

entered [6].

If an ACT command is issued, ChargeCache searches for

the corresponding row in the table. On a hit, lower tRCD and

RAS are applied for subsequent READ/WRITE and PRE

operations, respectively [6]. A miss results in using the

default timing [6].

14

Figure 29: Timing parameters and commands used to read data from DRAM [6]

Given the continuous leakage of cells, entries must be

invalidated after a certain amount of time. Using a clock to

track the expiration time for each entry would result in

increased storage cost and complexity of the implementation.

Therefore, two counters that count clock cycles are used [6].

ChargeCache [6] evaluates the reduction in DRAM

timing parameters, namely the time periods tRCD and tRAS

using SPICE simulations. Different charge amounts will

result in different bit line voltage levels during cell

activation, as displayed in Figure 30.

As shown in Figure 32 below, ChargeCache achieves up

to 8.1% (11.3%) speed-up for a single core (eight-core)

processor and on average obtains 2.1% (8.6%) speed-up for a

single core (eight-core) processor. Combining ChargeCache

with NUAT leads to an improvement of 9.6% on average for

an eight-core processor.

Because ChargeCache reduces the overall execution

time, in addition to improving access time, ChargeCache

leads to significant energy savings as well. Figure 31

illustrates that ChargeCache reduces energy consumption by

up to 6.9% and an average of 1.8% for a single-core

processor system, and a reduction of up to 14.1% and an

average of 7.9% for an eight-core processor system.

Figure 30: Effect of initial cell charge on bit line voltage [6]

Figure 31: DRAM energy reduction of ChargeCache [6]

Figure 32: Speedup with ChargeCache, NUAT and Low-Latency DRAM for single-core and eight-core workloads [6]

15

V. SPECIAL TOPICS IN CACHE MEMORY

ARCHITECTURE

The cache memory architecture plays an important role

in modern day computer systems. As discussed above in

Section 1, the advancement of performance of cache

memory systems is not as rapid as that of processor

performance. In recent years, new techniques have been

proposed to improve cache memory performance. This

section provides insight into the analysis or core memory

architecture performance related to real-world workload

analysis versus simulated workload analysis. This section

then focuses on the advances in core cache memory

architectures, provides a study of the leading methods to

improve core cache memory architectures, and illustrates

their performance.

A. Cloning of the Spatial and Temporal Memory Access

Behavior

We first start with a discussion and analysis related to

verifying optimal core memory architectures on real-world

workloads versus simulated workloads. One persistent

problem faced by computer architects is that most clients or

companies do not wish to share their proprietary workloads

(e.g., their software). In other words, companies are not

willing to provide system architects with their proprietary

software that runs on high performance computer systems.

Thus, proper analysis and optimization of cache memory is

not possible. In order to address this problem, architects use

open source versions of software or have to reconstruct the

software based on the description provided to them. This

practice is time consuming and still leaves architects

guessing about the requirements of the clients. An alternative

is to clone the software without reading or accessing the

proprietary information in the software code.

1) STM: Cloning of the Spatial and Temporal Memory

Access Behavior

Awad et al., proposes a solution which Awad et al.

generally refers to as “STM” (Spatial and Temporal

Memory) [19]. To clone the memory access behavior of a

software program, the cloning methodology should read both

spatial and temporal memory access behavior. STM gathers

memory access trace behavior statistics and then generates

clones that produce memory access models similar to the

proprietary software program. The trace clone or synthetic

clone generated is then passed through a simulator. The

inter-working of the STM can then be understood.

Consider an example of the following memory access

pattern at a cache block level: 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5,

3, 4, 5, 6, ...,: the access pattern shows a simple block

address stream, containing both spatial and temporal locality

behavior. Another assumption is that the cache is fully-

associative with the size of four cache blocks and employs

LRU (Least Recently used). In the example, the access

pattern misses every four access, which results in a hit rate of

75%. Further, we consider optimal and sub-optimal stride

values (where a stride value is the address increment value in

memory between the start of successive memory elements,

measured by the overall size of the memory element) [19].

The working of the STM can be understood by using six

different approaches to generate a clone for the

abovementioned example [19]:

• In the first approach as shown in Figure 33, a single

dominant stride +1 is considered. In this case the

stride value generates a hit rate of 100% which is

not correct.

• In the second approach, as shown in Figure 33, an

address transition graph is used, where each block

address is a node and each edge connects the node

Figure 33: Methods for modeling memory access [19]

https://en.wikipedia.org/wiki/Computer_data_storage#Primary_memory
https://en.wikipedia.org/wiki/Array_data_structure

16

• to its successor and the transition probability. The

measured hit rate, when 100,000 Monte Carlo

simulations were run, was 46.8%. The measured hit

rate is not even close the hit rate of the original

stream access.

• In the third approach, strides are recorded instead of

addresses. After construction, an address trace using

the stride frequency table, the measured cache hit

rate over a 100,000 Monte Carlo simulations was

46.8%, which is still not close to the desired hit

rate.

• In the fourth approach, a stride transition graph is

used, where each stride is a node and the probability

of transition is the edge. Over a 1000,000 Monte

Carlo simulations, the hit rate is found to be 67.8%,

which is not the desired hit rate but much closer

than the previous approaches.

• In the fifth approach, instead of just using the

previous stride, the history of the stride transitions

is maintained. With a history depth of two (2) the

hit rate over a 100,00 Monte Carlo simulations is

found to be between 74.3 to 75.7%.

• In the sixth approach, the depth of history of the

stride, when increased to three (3) gives a hit rate of

75%. STM adopts the stride pattern approach as its

foundation.

The profiling of memory access is done using the

profiling structure as shown in Figure 34. The Stack

Distance Probability (SDP) table shows the probability of

accessing the most recently used entries at the head of the

table. The Stride Pattern Probability shows the possible

stride values that can be the successor for the past value. In

Figure 34, M represents the depth of the stride history

pattern, (Z0, F0) denotes the first stride value. The SDP

tables are updated using the tags of the blocks which are

most recently used. When a new address is updated the SDP

table is searched for a matching tag. If the tags match, then

the SDP table is updated, else the Stride Pattern Probability

(SPP) table is updated. Figure 35 shows how the SPP table

is updated. Apart from this, during profiling the fraction of

updates to the SDP table (fSD) and the number of writes are

also collected.

Figure 34: Profiling structures [19]

The next step is to generate a clone based on the

profiling. Both the SDP and SPP tables are scaled by the

scaling ratio, which is the ratio of the required number of

memory references (Nnew) to the number of memory accesses

calculated during profiling (Norginal). The clones are

generated using four random numbers which help choose:

(1) which table to use (SPP or SDP), (2) to generate a read or

a write, (3) to select the row in the SDP table, and (4) to

select the column in the SDP table. This process is repeated

until Nnew accesses have been generated or until relevant

entries in the SP tables are exhausted [19].

Figure 35: Updating SP tables [19]

2) Validation and Evaluation Analysis

To validate STM as taught by Awad et al., a simulator

called the “gem5” was used to run 27 SPEC CPU2006

benchmarks. The system configurations used for collecting

the profiles is shown in Table 5. For validating STM, 400

different configurations per the benchmarks were used for

predicting accuracy of L1 cache miss rates, L2 miss rates,

and TLB miss rates. The metrics used for validation rank the

accuracy and correlation coefficient. The relative

performance ranking is calculated by comparing every

different cache/prefetcher/TLB configuration with an

appropriate L1/L2/TLB miss rate.

Table 5: Configurations for the system used for profiling [19]

Component Configuration

CPU x86-64 processor, atomic mode, 2GHz

L1 Cache 64B blocks, 32 KB size, 2-way, LRU

L2 Cache 64B blocks, 512KB size, 8-way, LRU

Main memory 2 GB

OS Linux, Gentoo release 1.12.11.1

Figure 36 (see next page) shows the rank accuracies for

STM, Single Dominant Stride (SDS), and “West”. SDS and

West are proposed cloning mechanisms that have been

evaluated against STM. The ranking accuracies are obtained

by fixing the L1 cache configuration to 16KB size, 2-way

associatively with a 64-block size. The L1 cache is

augmented with a stream buffer prefetcher. From Figure 37

it can be seen that STM performs better than SDS and West.

Although, SDS tries to capture the spatial locality behavior,

it is unable to properly capture spatial behavior. For a further

understanding, the miss rate map for 12 representative

benchmarks for STM is plotted as shown in Figure 37. From

Figure 37, it can be seen that STM performs well except

against two benchmarks: “Zeus” and “h264”. [19].

17

Figure 36: Rank accuracies [19]

Figure 37 Comparisons between the original and the L1 miss rate [19]

B. Read Write Partitioning (RWP)

The processor is stalled when there is a cache read miss

and the instructions following the miss are dependent on this

data. In a typical code, write misses are usually not in the

critical path of execution. Whereas read misses or load

requests are in the critical path. Most cache management

mechanisms do not take this into account. To exploit this

disparity, the cache lines can be differentiated into clean and

dirty lines.

1) Read Write Partitioning Improvements

The paper “Improving Cache Performance Using Read-

Write Partitioning” by Kahn et. al. [23] provides

improvements to Read Write Partitioning (RWP) that

provides an average of 5% speed-up across the entire SPEC

CPU2006 suite. In this section the motivation, framework

and performance analysis is illustrated for RWP

improvements.

The motivation of RWP is to exploit the disparity

between read and write misses to improve the cache

performance. There have been many attempts to differentiate

between critical and non-critical lines. Load and store

instructions are treated differently in the processor pipeline.

The goal of RWP is to increase the probability of cache hits

for critical read requests. For RWP, RWP divides the last-

level cache into two logical partitions for clean and dirty

lines. It also predicts the best partition sizes to increase the

likelihood of future read hits.

18

Figure 38: Drawbacks of not taking read-write differences into account [23]

The main motivation can be achieved by simply favoring

cache read lines (e.g., read requests for cache lines) over

write lines (e.g., write requests for cache lines). To achieve

this, the cache can be sorted into two categories, read lines

and write only lines, and then based on that, favor read lines

when making replacement decisions. This classification is

only possible by predicting if clean lines will be written to or

if dirty lines are being read.

Workloads with write only lines can be categorized into

two categories: (1) read-intensive and (2) write-intensive.

The majority of the cache lines for read intensive workloads

are clean lines. The write intensive workloads produce a

large number of writes. Writes are often requested by

subsequent reads while the cache lines are still residing in

the L1 cache. After eviction from the L1 cache, however,

dirty cache lines are rarely reused. Not all dirty lines are

write-only lines, thus making it hard to solve the problem of

write-only lines by not allocating write lines in cache.

Different workloads exhibit different types of behavior based

on different mixes of write-only, dirty-read, and clean lines.

A much more sophisticated approach (which can identify

write-only lines, or favor one type of access over another

based on the likelihood of future reads) is required to

improve performance across multiple workloads [23].

2) Example of the Need for RWP

To understand the benefits of read write partitioning,

consider the example shown in Figure 38: Figure 38(a)

shows a loop with a burst of memory references occurring at

four different points in the execution of a loop. Out of the six

(6) cache lines, “B” is read and written to and “C” is only

written to. Using a LRU replacement algorithm for a fully

associative cache with a total of 4 lines, at the end every

iteration “D” gets evicted and the intermittent access to “B”

and “D” causes three (3) stalls for each iteration. Figure

38(c) shows the timeline for one iteration with read-biased

policy and Figure 38(d) shows the timeline for one iteration

with write-biased policy. From this example it can be seen

that differentiating between reads and writes in the cache

improves execution time. While simple approaches as used

in this example show improvement, the method could cause

unwanted effects in performance in other areas [23].

3) Read Write Partitioning Framework

The objective is to maximize the number of read hits in

the cache so that critical read requests can be executed

without stalls. To achieve this, cache lines that are probable

to be used as read lines are identified. Most applications have

more read lines as compared to write lines. For example,

benchmark 483.xalancbmk has more reads in clean lines

than dirty lines. Each cache set can be logically divided into

two partitions for clean and dirty lines. The per line dirty

status bit is used to determine if the line is part of the read

partition or write partition. When writing to a clean line, the

dirty bit is set and it is logically considered to be part of the

write partition.

With respect to partition size, the partition size is not

monitored continuously. The partition sizes are adjusted

when a new cache line is allocated. When a new cache line is

allocated, the system has to decide which cache line to evict.

The decision on which line to evict is decided based on the

current number of dirty lines. There are three cases that

determine which line gets evicted.

• The current number of dirty lines is greater than the

predicted best dirty partition set. In this case the

least recently used line in the dirty partition is

picked by the RWP algorithm.

19

Figure 39: Speedup over Baseline LRU [23]

• The current number of dirty lines is smaller than the

predicted best dirty partition set. In this case the

least recently used line in the clean partition is

picked by the RWP algorithm.

• The current number of dirty lines is equal to the

predicted best dirty partition set. In this case the

selection of the evicted line (a “victim” line)

depends on the memory access type. If it is a read,

then the RWP algorithm picks the victim line from

the clean partition. If it is a write, then the line to

evict is selected from the dirty partition.

RWP checks partition sizes only when clean cache lines

are written to. To estimate partition sizes, RWP compares the

read reuse exhibited by the clean and dirty lines as if each

were given exclusive access to the entire cache. RWP uses

the same mechanisms proposed by M. Qureshi et al. in

“Utility-based cache partitioning: A low-overhead, high-

performance, runtime mechanism to partition shared

caches”[28]. To summarize: the RWP is confined only to

the last-level cache. The RWP does not attempt to identify

de-prioritized write-only cache lines. The write-only cache

lines are evicted by changing the clean and dirty partition

size [23].

4) Read Reference Predictor (RRP)

The abovementioned paper by Kahn, et. al. [23] further

proposes an additional mechanism called Read Reference

Predictor (RRP). RRP is used to differentiate between cache

lines which are susceptible to further reuse versus cache lines

that are not probable to be used again. This categorization is

performed based on the likelihood of being reused. This is

achieved by using the program counter (PC) of the memory

instruction with an emphasis on identifying reuse by

subsequent reads and not to predict general reuse by all

memory instructions. The reason for focusing on only reads

lines is because read misses are more critical as compared to

write misses. This method bypasses any cache lines that are

likely to only be written to [23].

The frame work of RRP is similar to that of RWP as

discussed above. RRP also uses a shadow directory added to

sample sets to measure the amount of read reuse. The

shadow directory has a cache line tag which shows the

amount of read reuse and a hashed PC value of the

instruction which is allocated to the cache line. Figure 40

shows how the locality is tracked in an 8-way set associative

cache.

Figure 40: Sample sets in Read-Reference Predictor [23]

Turning to Figure 40 by way of example: the first

instruction “A” writes to data address 0x8000. The initial

write allocates an entry for cache line 0x8000 in the shadow

directory with the critical bit initially set to 0. “D” also reads

to the same cache line 0x8000. In this example, the critical

bit for 0x8000 is set because it is reused. It can be seen that

address 0x3000 is first read by instruction “C” and then

subsequently written to by instruction “E”. However, the

critical bit is not set because RRP only focuses on read reuse.

The most important advantage of RRP over RWP is that it

explicitly classifies memory requests as exhibiting read and

write reuse. However, implementation of RRP is much more

complex: the most significant complication presented by

RRP is that write back requests are not associated with any

program counter (PC). The PC recorded for L1 has to be

passed to L2 and then to LLC when the line is written back

from L1 and L2. To do this, the RRP solution requires

additional storage and logic complexity in the core cache to

store and update the hashed-PC value with the cache line

tags [23].

5) Evaluation Methodology and Performance Analysis

To evaluate the RRP and RWP methods, both are

compared to prior solutions including: Dynamic Insertion

Policy (DIP), Re-Reference Interval Predictor (RRIP), and

Single-Use Predictor (SUP). All of these solutions do not

20

take the read write criticality into account. The results shown

in Figure 39 are based on the evaluation methods,

simulations, and assumptions as noted in Section 5 of the

paper by Kahn et al. [23]. Figure 39 shows the speedup for

the cache sensitive workloads for a variety of replacement

algorithms as compared to a baseline cache with LRU. It can

be seen that on average, RRP improves performance by

17.6% and RWP improves performance by 14.6%. The

worst performance is for 571.omnetpp because of a sampling

errors. For memory-intensive workloads, RRP achieves

7.9%, 7.4% and 5% performance gains over DIP, RRIP, and

SUP+, respectively. For memory-intensive workloads, RWP

delivers speedups of 6.8%, 6.3% and 3.9% over DIP, RRIP,

and SUP+, respectively [23].

Figure 41 shows LLC memory load misses normalized to

an LRU baseline for various benchmarks. As shown in

Figure 41, the RRP and RWP techniques reduce load misses

by 30% and 29% respectively when compared to the

baseline. The reduction of load misses can also be noticed

when compared to the other configurations which do not

take the read write criticality into account [23].

Figure 41: Load Traffic over Baseline LRU [23]

The key contribution of the Kahn et al. paper [23] is the

manner in which read and write lines are processed (e.g., a

process which favors read lines). This technique provides an

improvement of speed-up and also reduces load misses.

Overall, this method improves the performance of the cache

memory. While Kahn et al, introduces marked

improvements, there are a few drawbacks which were not

addressed in the Kahn et al paper. For example, the method

taught by Kahn et al. does not address multi-threaded

workloads that share LLC lines [23].

C. Removing Cliffs from Overall Cache Performance

At times, LLC (Last Level Cache) suffers significant

performance degradation (e.g., “cliffs”) when there are only

minor changes in program behavior or changes in the

available cache space. Such minor changes results in large

changes in the miss rate. To expand, performance cliffs are

thresholds where performance suddenly changes as data tries

to fit into the cache.

Consider the following example to better understand the

cause and effect of performance cliffs in caches: if an

application repeatedly scans a 32 MB array, yet the cache is

less than 32 MB (say 31 MB by way of example), then the

LRU policy will evict cache lines before the lines are hit.

However, if the cache is increased from 31 MB to 32 MB,

there will be a sudden increase in the hit rate. Figure 42

indicates this type of behavior based on the SPEC CPU 2006

benchmark workload “libquantum”. Figure 42 plots Misses

Per Kilo-Instructions (MPKI) against the cache size and

plainly shows an LRU performance cliff. There is a sudden

decrease of MPKI to near zero at a 32 MB cache size. Such

performance cliffs give rise to the following three problems:

• Cliffs waste resources and degrade performance.

The cache space used does not increase

performance, but increases energy consumption and

deprives other application of cache space.

• Cliffs make it difficult to assure Quality of Service

QoS) by causing unstable and unpredictable

performance; small fluctuations in effective cache

capacity result in large swings in performance.

• Without the convex miss curves, optimal allocation

becomes an NP- hard problem, therefore cliffs

make cache management complicated.

Figure 42: Performance of libquantum over cache sizes. LRU

causes a performance cliff at 32MB. Talus eliminates this cliff [20]

1) The Talus Example: A Simple Way to Remove Cliffs in

Cache Performance

A paper by Beckman et al, entitled “Talus: A Simple

Way to Remove Cliffs in Cache Performance” [20] produced

good improvement in the area of cache performance cliffs.

Talus works by bifurcating the access pattern into two

partitions. Talus decreases an application’s miss rate in a

convex fashion by controlling the sizes of the cache

partitions. Talus works by partitioning an access stream. This

is achieved by splitting the cache into two hidden shadow

partitions. The sizes of these partitions are then controlled in

order to monitor how accesses are distributed between the

partitions in order to achieve the desired performance. This

partition configuration is derived from the “miss curves”

presented by Beckman et al [20]. For example: a miss curve

is shown in Figure 43. Figure 43 shows a miss curve of LRU

performance for an application that accesses 2 MB of data at

random and an additional 3 MB sequentially.

Figure 43: Example miss curve from the application with a cliff at

5MB. The dotted line shows how Talus smooths this cliff [20]

21

Figure 44: Performance of various caches for the miss curve in Figure 43 [20]

At 5 MB, a performance cliff occurs because MPKI

drops from 12 to 3 MPKI. With a 2 MB cache, MPKI is 12

and stays at 12 until about 4 MB; thus there is no benefit

from increasing the cache size from 2 MB to 4 MB. In this

example, Talus achieves 6 MPKI at around 5 MB. The LRU

policy is inefficient at 4 MB, but efficient at 2 MB and 5

MB. In contrast, Talus makes a part of the cache function as

a 2 MB cache and the rest like a 5 MB cache. The 4 MB

cache behaves like a combination of efficient caches and is

therefore efficient overall.

How Talus works is further shown in Figure 44. Talus

traces out the convex hull of the original miss curve. The

convex hull is the smallest convex shape that contains the

curve. Figure 44(a) shows the original 2 MB cache, split into

parts in a 1:2 ratio. The application accesses the cache at the

rate of 24 Accesses Per Kilo-Instruction (APKI). In a hashed

cache, the accesses are evenly split between sets. The top

third gets eight (8) APKI and the bottom third gets 16 APKI.

The misses shown in Figure 43 at 2 MB will also be split by

the same ratio. Figure 44(b) shows an original cache at 5 MB

and Figure 44(c) shows how Talus manages a 4 MB cache

using set portioning. The top part behaves like the top set of

a 2 MB cache which yields a MPKI of 4, and the bottom sets

behave like the bottom half of the 5 MB cache yielding a

MPKI of 2. This results in a total MPKI of 6. It can be seen,

that this values lies on the hull of the convex curve as shown

previously in Figure 43 [20].

Figure 45 Talus divides cache space in two partitions of sizes s1

and s2, with miss rates m1(s1) and m2(s2), respectively. The first

partition receives a fraction ρ of accesses [20]

2) Design and Implementation

Talus controls a range of parameters. For an application

accessing a cache of size “s”, with any replacement policy,

Talus divides the cache into two shadow partitions of sizes

“s1” and “s2”. The first partition has a “” fraction of the

access stream, the other partition has a “1-” fraction as

further shown in Figure 45. Talus follows the following

assumptions and rules:

• Miss curves are stable over time and change slowly

relative to the reconfiguration interval.

• For a given access stream, a partition’s miss rate is

a function of its cache size alone; other factors (e.g.,

associatively) are of secondary importance.

• Given an application and replacement policy

yielding miss curve m(s), pseudo-randomly

sampling a fraction ρ of accesses yields miss curve

m′(s′):

𝑚′(𝑠′) = 𝜌𝑚 (
𝑠′

𝜌
)

• An application and replacement policy has a size

“s” that is linearly interpolated between any two

points on the curve, m(α) and m(β), where α ≤ s <

β.

𝑚𝑠ℎ𝑎𝑑𝑜𝑤 =
𝛽 − 𝑠

𝛽 − 𝛼
 𝑚(𝛼) +

𝑠 − 𝛼

𝛽 − 𝛼
 𝑚(𝛽)

• Given a replacement policy and application

yielding miss curve m(s), Talus produces a new

replacement policy that traces the miss curve’s

convex hull [20].

Talus uses existing partitioning solutions with few

extensions both in software and hardware. The

implementation of Talus is further shown in Figure 46. Talus

wraps around the systems partitioning algorithm. Talus

allows the system portioning to safely assume convexity,

then realizes convex performance, instead of proposing its

own portioning. Talus generates appropriate shadow

partition sizes from the partitioning algorithm. All this is

done in a post-processing step.

In the hardware implementation, Talus works with

existing partitioning schemes, either coarse grained or fine-

grained, with the following extensions:

• Talus doubles the number of partitions in the

hardware.

• Talus uses two shadow partitions per logical

partition.

• Talus adds one configurable sampling function to

distribute accesses between shadow partitions [20].

22

Figure 46 Talus implementation: pre- and post- processing steps

in software plus simple additions and extensions to existing

partition schemes in hardware [20]

3) Evaluation and Performance analysis

Talus [20] was previously evaluated in a variety of

settings to demonstrate the following claims:

• Talus avoids performance cliffs, and does not rely

on replacement policies and partitioning schemes.

• Talus achieves performance competitive with high

performance policies and avoids pathologies. 

• Talus is both predictable and convex, so simple

convex optimization improves shared cache

performance and fairness.

The results for Talus shown in this section are based on

the methodologies as shown in the paper by Beckmann et al.

[20]. To show that Talus follows the first claim stated above,

Figure 47 shows miss curve performance with LRU for two

SPEC CPU2006 applications: “libquantum” and “gobmk”.

Talus was evaluated for three different partition schemes: (1)

Vantage (Talus+V/LRU), (2) way partitioning

(Talus+W/LRU), and (3) idealized partitioning on a fully-

associative cache (Talus+I/LRU). In all of the cases, Talus

proved to be effective in removing performance cliffs.

To show that Talus with LRU performs well for a single

program, miss curve performance from 0 MB to 16 MB for

six (6) SPEC CP2006 benchmark applications are plotted.

Talus+v/LRU is compared to a number of high performance

policies: SRRIP, DRRIP and PDP. Figure 48 shows how

Talus compares to these other policies. From these plots it

can be seen that Talus avoids the inefficiencies of other LRU

replacement policies, without sacrificing LRU predictability.

To prove that Talus simplifies cache management and

improves performance of LLCs, Talus+v/LRU is evaluated

on an 8-core CMP (Chip Micro-Processor) with a shared

LLC. Figure 49 (see next page) shows the weighted and

harmonic speed-ups as compared to un-partitioned LRU

policies for 100 random mixes of the 18 most memory

intensive SPEC CPU2006 applications. Talus+v/LRU, LRU

and TA-DRRIP are compared along with two partitioning

algorithms: (1) hill climbing and (2) look-ahead. Hill

climbing allocates cache capacity in an increasing manner,

based on which partition would benefit the most from the

next increase in cache memory space.

Figure 47: Talus on LRU replacement with various hardware

policies: Vantage (V), Way partitioning (W), and Ideal (I) [20]

Figure 48: Misses per kilo-instruction (MPKI) of Talus (+V/LRU)

and high-performance replacement policies on representative

SPEC CPU2006 benchmarks from 128 KB to 16 MB. [20]

Look-ahead is a quadratic heuristic that approximates the

NP-complete solution of the non-convex optimization

problem. Weighted speedups over LRU are up to 41%/(of

the geometric mean of) 12.5% for hill climbing on

Talus+V/LRU, 34%/10.2% for Look-ahead on LRU,

39%/6.3% for TA-DRRIP, and 16%/3.8% for hill climbing

on LRU. From these plots it can be seen that the only scheme

that is competitive with Talus+V/LRU is Look-ahead, an

expensive heuristic whose alternatives are complex. This

shows that, by ensuring convexity, Talus makes partitioning

simple and cheap [20].

23

Figure 49: Weighted and harmonic speedup over LRU of Talus

(+V/LRU), partitioned LRU (using both Look-ahead and hill

climbing), and thread-aware DRRIP [20]

D. Locality - Aware Data Replication in the Last - Level

Cache

In the future, multicore processors will process massive

data with varying degrees of locality. Harnessing on-chip

data locality to optimize the utilization of cache and network

resources is of fundamental importance. To achieve this, in

the paper, “Locality - Aware Data Replication in the Last -

Level Cache” [22], Kurian et al. proposes a data replication

protocol for the Last Level Cache (LLC). The goal of the

protocol is to lower memory access latency and energy by

replicating only high locality cache lines in the LLC slice of

the requesting core, while keeping the off-chip miss rate low.

The utility of data replication at the LLC can be best

evaluated by measuring cache line reuse. Reuse at the LLC is

defined as the number of accesses to a cache line by a core

before the cache line is evicted or before a conflicting access

by another core occurs.

Figure 50: Distribution of instructions, private data, shared read-

only data, and shared read-write data accesses to the LLC as a

function of run-length [22]

Figure 50 shows the distribution of the number of

accesses to a cache line as a function of run length. In Figure

50, it can be seen that 90% of the accesses for the application

BARNES use shared data of a run length greater than or

equal to 10. As the number of accesses to higher run length

cache lines increase, it is beneficial to replicate the cache line

in the requester’s LLC slice. Nonetheless, if the replication

is done when there are very few accesses to a higher run

length line, such a policy would increase the LLC size

without increasing performance. Therefore, the decision of

replication should be based on the locality, instead of the

type of data [22].

1) Locality – Aware LLC Data Replication

The most important components of data replication are:

• Choosing which cache lines to replicate.

• Determining where to place a replica.

• How to maintain coherence for replicas.

Figure 51 provides a better understanding on how the

locality aware LLC technique works [22].

Figure 51: Mode transition at taught by Kurian et al. [22]

Figure 51 shows a transition graph. Initially, all cores

with respect to all cache lines are initialized to the no-replica

state, which means that no cache line replica is created at the

LLC and all requests are serviced directly at the LLC home.

The home reuse counter for each core tracks the number of

accesses by that core to the corresponding cache line. If there

are enough reuses, then a replica is created and that state

goes to replica state. The number of reuses is determined by

the replication threshold. If the home reuse counter reaches

the replication threshold, the core is promoted to replica

status and a replica is created in the LLC slice corresponding

to the core. It is easy to see that if the replication threshold is

high, it is harder to create a replica, and therefore, a lower

number of replicas are created and vice versa. Once the

replica is made the replica reuse counter keeps track of the

number of accesses by the core to the replica location. If the

replica reuse counter drops below the replication threshold,

then the replica is evicted and it goes back to no replica state

[22].

In Figure 52, the black data blocks are the data blocks

with high reuse and local LLC replication is allowed.

Figure 52: Mockup requests 1-4 showing the locality-aware LLC

replication protocol [22]

These replica service requests are from instructions 1 and

2. The red data blocks indicate low reuse, and these blocks

are not allowed to be replicated. The L1 cache miss requests

from instruction 3 must access the LLC slice at the home

core. The replication decision is based on the previous cache

line reuse behavior.

24

Figure 53: Completion Time breakdown for the LLC replication schemes evaluated. [22]

Figure 54: L1 Cache Miss Type breakdowns for the LLC [22]

2) Performance analysis

The results shown in this section are based on the

performance models and metrics described in the paper

“Locality – Aware Data Replication in the Last – Level

Cache” [22]. Figure 53 shows the plot of completion times

for the replication schemes evaluated. The RT-1, RT-3, RT-8

bars correspond to the locality aware scheme with replication

thresholds of 1, 3 and 8 respectively. The completion time

trends are based on the following factors:

• The type of data accessed at the LLC (instruction,

private data, shared read- only data and shared read-

write data).

• Reuse run-length at the LLC.

• Working set size of the benchmark.

Figure 54 shows how L1 cache misses are handled by the

LLC. From Figure 54, it can be inferred that the locality

aware protocol provides better performance than the other

LLC data management schemes. It is trivial to balance the

on-chip data locality and off-chip miss rate and overall, a

replication threshold of 3 achieves the best trade-off.

Overall, the locality-aware protocol has a 16%, 14%, 13%

and 21% lower energy and a 4%, 9%, 6% and 13% lower

completion time as compared to VR, ASR, R-NUCA and S-

NUCA, respectively [22].

E. Assisted Dead Region Management for Last Level

Caches

Last Level Caches (LLCs) bridge the performance miss-

match between the processor and main memory. LLCs also

reduce the amount of energy consumed per access. The most

persistent problem caused in LLCs are dead blocks. Dead

block are outdated blocks of data that stay in the cache in an

unused state for a long time until they are evicted.

Already existing methods to predict dead blocks can be

broadly classified into dynamic or static methods:

• The dynamic methods predict dead blocks based on

the block access history.

• The static methods predict dead blocks by using

control flow information to determine future access.

Because LLCs play an important role in reducing overall

access time (as compared to access time to main memory), it

is critical to manage LLCs effectively. The effective

management of dead blocks within an LLC gives rise to

significant efficiency improvements in the LLC.

25

1) RADAR (Runtime- Assisted DeAd Region) Management

for Last Level Caches

RADAR, as proposed by Manivannan et al. [21] is an

improved method to manage dead blocks within LLCs.

RADAR is a hybrid static/dynamic dead block management

technique that can accurately predict and evict dead blocks.

RADAR is mainly based on a runtime system that collects

static region-access information about the programming

model and dynamic access information from the architecture.

RADAR uses two orthogonal schemes: (1) look-ahead and

(2) look-back schemes. Look–ahead schemes look into the

near future to look for dead blocks. Look-back uses the per–

region access history to predict how far into the future the

next region access will occur [21].

2) RADAR Framework

After a task is completed, RADAR’s runtime system

predicts if the regions that have been accessed by a task are

dead. If the region is predicted to be dead, the RADAR

algorithm informs the LLC to demote these blocks to the

LRU position. Figure 55 shows the overview of RADAR.

RADAR is an interaction across three layers: (1) a

programming model layer that conveys static data-

dependency information by providing the regions that are

used by tasks; (2) a runtime system layer responsible for

detecting dead regions during execution and (3) an

architecture layer responsible to provide dynamic feedback

information about region access and demote the cache blocks

that belong to dead regions.

Figure 55: Overview of RADAR [21]

Three schemes can be implemented on top of the

RADAR framework to accurately predict dead regions,

namely: (1) a look-ahead scheme, (2) a look-back scheme

and (3) combined schemes. In the look-ahead scheme, the

runtime system dynamically constructs a data-flow graph of

the tasks that are dispatched and are to be executed and those

waiting for dependency resolution. This graph gives the

system the ability to observe future tasks and their access

region. If a region is not accessed by any of the tasks in the

data-flow graph, then the region is deemed dead. Figure 56

shows a task dependency graph and Figure 57 shows how

the runtime system tracks the state of regions using a

dependency table and performs reference counting. In the

example shown in Figure 56 and Figure 57, T0 is the first

task and it does not have any dependencies. Subsequently, a

new entry for A00 is allocated in the dependency table and

the writer field is set to T0. When tasks T1, T2, T3, and T4

are generated, the runtime system detects a dependency with

A00 and tasks T1, T2, T3 and T4 are added to the reader list.

In addition, the new tasks are added to T0’s successor list

and the reference count of each new task is incremented by

one as shown in Figure 57.

Figure 56: Sparse LU dependency graph [21]

Figure 57: Dependency tracking mechanism [21]

When T0 completes execution, the writer field is cleared

and the reference count of each of its successors is

decremented by one. Once a successor’s reference count

becomes zero, it denotes that all its dependencies have been

satisfied. The dependent tasks are queued in the ready queue

for execution. Finally, when tasks T1, T2, T3, and T4 finish

execution, they are removed from the readers list of A00.

It should be noted that the look-ahead scheme has two

limitations. The first limitation is that the scheme does not

provide temporal information. In other words, the scheme

does not provide the information of when the next access to a

region will occur. The second limitation is: if a reuse is not

detected, it does not mean that the block is dead. Instead, this

could happen if the master thread that generates tasks has not

populated the look-ahead window fast enough.

The look-back scheme works on the observation that

accesses tend to have a repetitive pattern. The scheme

predicts future accesses using the same methodology as

branch predictors: (1) classify the current region access as

26

hit/miss (analogous to taken/not taken) and (2) predict

whether the next access to the region will be a hit/miss based

on previous accesses to the region. Figure 58 shows the

working of the look-back scheme on the same example used

to show the working of the look-ahead scheme.

Figure 58: Overview of Look back Scheme [21]

The two orthogonal schemes could be combined to

achieve better performance for the identification of unused

blocks. There are two approaches for this combination: (1)

the Aggressively combined look-ahead and look-back

Scheme (AS) and the Conservatively combined look-ahead

and look-back Scheme (CS). We define the set, LA (Look-

Ahead) as the set of all the dead regions classified by the

look-ahead scheme and the set LB (Look-Back) as the set of

all dead regions classified by the look-back scheme. For CS,

the set of regions of dead blocks is the combined set of

regions that belongs to LA ∩ LB, i.e., the intersecting set of

LA and LB. For AS, the dead region set is the combined set

of dead block regions that belongs to LA ∪ LB, i.e., the

union of the sets LA and LB [21].

3) Performance analysis

The different schemes used by RADAR to detect dead

regions were evaluated by Manivannan et al. [21]. Figure 59

and Figure 60 show the LLC misses for different RADAR

policies normalized to the LRU baseline scheme and the

execution time for different RADAR policies normalized to

the LRU baseline scheme respectively. The look-ahead

scheme reduces LLC misses for all the applications. It can be

seen that on average, LA reduces misses in the LLC by 23%.

From the results, it can be seen that the look-back scheme

outperforms the LRU scheme for all applications.

Nonetheless, the look-back scheme does not perform as well

as the look-ahead scheme. The aggressive combined scheme

(AS) outperforms all other schemes. The average reduction

in LLC misses for all applications is more than 26% when

compared to the LRU baseline scheme. The conservative

combined scheme (CS) outperforms the look-back scheme

using the future view of look-ahead. Nonetheless, CS is

outperformed by the AS [21].

RADAR is then compared to other state-of-the-art dead

block predictors, like the Count-based Dead-Block Predictor

(CD-BP), Sampling-based Dead Block Predictor (SDBP)

and Signature-based Hit Predictor (SHiP). The focus of the

analysis is to measure miss rates, which should decrease as

dead blocks are replaced in order to improve LLC efficiency.

The results shown are based on the evaluation methodology

and metrics shown in the paper “RADAR: Runtime-Assisted

Dead Region Management for Last-Level Caches” [21]. The

four different schemes used by RADAR (e.g., RADAR, CD-

BP, SDBP, SHiP) are compared with the baseline LRU

scheme.

Figure 59: LLC misses for different RADAR policies normalized to

the LRU baseline [21]

Figure 60 Execution time for different RADAR policies normalized

to the LRU baseline [21]

Figure 61: LLC misses for RADAR and state-of-the-art dynamic

dead block prediction techniques normalized to the LRU baseline

[21]

Figure 62: Execution time for RADAR and state-of-the-art

dynamic dead block prediction techniques normalized to the LRU

baseline [21]

27

Lastly, Figure 61 and Figure 62 show the comparison

between RADAR and the other abovementioned dynamic

dead block predictors (CDBP, SDBP and SHiP). Figure 61

shows the LLC misses for RADAR and state-of-the-art

dynamic dead block prediction techniques normalized to the

LRU baseline scheme. Figure 62 shows the execution time

for RADAR versus the other state-of-the-art dynamic dead

block prediction techniques normalized to the LRU baseline

scheme. While the state-of-the-art techniques reduce the

number of LLC misses, RADAR is on average at least 10%

better. The data shows that RADAR is more effective than

existing techniques at managing dead blocks. From the

results it can be seen that RADAR performs better than other

dead block LLC management techniques overall [21].

4 Conclusion and Future Work

As discussed above in this paper, many encouraging

improvements in cache memory architecture performance

have been identified and fully tested. For the most part,

cache memory system performance testing has been done via

simulations, without the benefit of seeing such

improvements being truly implemented in real-world high-

performance computer architectures. As discussed in the

case study below, while it can take many years to get cache

memory architecture research out of the lab and

implemented into silicon, once implemented, the benefits of

such research can and do make a dramatic impact.

Indeed, as shown for the Intel Xeon Haswell multi-core

architecture (see “A Case Study – From Concept to

Reality”), while the road from research to reality is long, the

benefits are great. While strides in cache memory

architectures continue, multi-core processor performance

still outflanks cache memory performance, leaving

seemingly limitless areas of research to be explored in the

future. Compounding the gap between cache memory

performance and multicore processor performance is the fact

that individual cache memories associated with each

processor core must at some point be mapped to a single

shared memory, thus causing a bandwidth bottleneck. With

zetta-flop (e.g., 1021) performance computing systems

projected by 2020, a continuum of new breakthroughs for

cache memory designs are required [25].

Just one area ripe for additional research appears to be in

the area of optical cache memories. Optical cache memories

offer the ability for the memory speed to keep up with the

ever increasing data bandwidth requirements presented by

future multi-core processor systems. Figure 64 shows an

envisioned multicore to optical cache memory architecture

using an optical-to-digital interface. Encouragingly,

simulation results have shown a 40% improvement in cache

memory access speed at a clock rate of 16 GHz [25].

A Case Study - From Concept to Reality [24]

As far back as the mid 2000s, researchers envisioned techniques to significantly improved multi-core processor system

architectures by employing breakthroughs in a research area called “Quality of Service (QoS)”. QoS relates to reducing

shared cache memory contention while co-running applications. Specifically, based on simulations, a few researchers

identified two (2) new QoS prospective research areas to improve multi-core processor system architectures: (1) Cache

Monitoring Technology (CMT), and (2) Cache Allocation Technology (CAT).

During the research phase, CMT technology promised improvements by intelligently monitoring how shared cache

memory was actually used by a given workload. Separately, CAT technology offered enforcement of how much a given

workload was allowed to use shared cache resources. Combined, CMT and CAT was envisioned to provide solid

improvements.

Figure 63 - Overview of CMT (Left) and CAT (Right) [24]

While CMT and CAT technology was seen by researchers to be promising, it took 10 years before such research was able

to be applied in practice [24]. On June 4, 2013, Intel introduced the Xeon “Haswell” 4th generation processor employing both

CMT and CAT technologies [24][29].

The evaluation of the CMT and CAT technologies incorporated in the Intel Xeon Haswell chip was proven to provide

improvements as high as 450% without a single case of inferior performance over a wide spectrum of tested workloads [24].

28

Figure 64 – Overview of (a) present day cache memory

architecture versus (b) optical cache memory architecture [25]

Researchers will no doubt continue to rise to the challenge

of bridging the gap between processor system performance

and cache memory system performance as they have for

nearly 40 years.

VI. BIBLIOGRAPHY

[1] Intel Corporation, "Photograph of Intel Xeon processor

7500 series die showing cache memories," 31 March

2010. [Online]. Available: https://phys.org/news/2010-

03-intel-xeon-processor-series.html. [Accessed 20

February 2017].

[2] IBM Products Division, "System/370 model 168 theory

of operation/diagrams manual (volume 1),"

Poughkeepsie, NY, 1976.

[3] J. R. Goodman, "USING CACHE MEMORY TO

REDUCE PROCESSOR-MEMORY TRAFFIC".

[4] H. Bajwa and X. Chen, "Low-Power High-

Performance and Dynamically Configured Multi-Port

Cache Memory Architecture".

[5] K. Tanaka, "Cache Memory Architecture for Leakage

Energy Reduction," in International Workshop on

Innovative Architecture for Future generation

Processors and Systems 2007, 2007.

[6] H. Hassan, G. Pekhimenko, N. Vijaykumar, V.

Seshadri, D. Lee, O. Ergin and O. Mutlu,

"ChargeCache: Reducing DRAM Latency by

Exploiting Row Access Locality," IEEE, 2016.

[7] C. K. Tang, "Cache system design in the tightly

coupled multIproeessor system," AFIPS Proceedings,

vol. 45, pp. 749-753, 1976.

[8] L. M. Censier and P. Feautrier, "A new solution to

coherence problems in multicache systems," IEEE

Transactions on Computers, Vols. C-27. No. 10, pp.

1112-1118, 1978.

[9] G. S. Rao, "Performance Analysis of Cache

Memories," Journal of the ACM, vol. 25, pp. 378-395,

1978.

[10] R. L. Norton and J. L. Abraham, "Using write back

cache to improve performance of multiuser

multiprocessor," in Int. Conf. on Par. Proc., IEEE cat.

no. 82cH1794-7, 1982.

[11] M. C. Easton and R. Fagin, "Cold-start versus warm-

start miss ratios," CACM, vol. 21. No. 10, pp. 866-872,

1978.

[12] C. Bell, J. Judge and J. McNamara, "Computer

engineering: a DEC view of hardware system design,"

Digital Press, 1978.

[13] E. Akanksha, H. Shanvas and V. Nallusamy, "Modern

CPU's Memory Architecture - A Programmer's

Outlook," Modern Education and Computer Science

Press, no. Published Online April 2012 in MECS,

2012.

[14] S. H. Pugsley, Z. Chishti, C. Wilkerson, P.-f. Chuang,

R. L. Scott, A. Jaleel, S.-L. Lu, K. Chow and R.

Balasubramonian, "Sandbox Prefetching: Safe Run-

Time Evaluation of Aggressive Prefetchers," IEEE, pp.

1-12, 2014.

[15] N. Beckmann, P.-A. Tsai and D. Sanchez, "Scaling

Distributed Cache Hierarchies through Computation

and Data Co-Scheduling," p. IEEE, 2015.

[16] V. Jimenez, F. P.O'Conell and F. Cazorla, "Increasing

Multicore System Efficiency through Intelligent

Bandwidth Shifting," IEEE, pp. 39-50, 2015.

[17] Z. Wang, D. A. Jimenez, C. Xu, G. Sun and Y. Xie,

"Adaptive Placement and Migration Policy for an STT-

RAM-Based Hybrid Cache," IEEE, 2014.

[18] H. Farbeh and S. G. Miremadi, "PSP-Cache: A Low-

Cost Fault-Tolerant Cache Memory Architecture,"

EDAA, 2014.

[19] A. Awad and Y. Solihin, "STM : Cloning the Spatial

and Temporal Memory Access Behavior," IEEE, 2014

.

[20] N. Beckmann and D. Sanchez, "Talus: A Simple Way

to Remove Cliffs in Cache Performance," in 2015

IEEE 21st International Symposium on High

Performance Computer Architecture (HPCA), San

Francisco, 2015.

[21] M. Manivannan, V. Papaefstathiou, M. Pericàs and P.

Stenström, "RADAR: Runtime-Assisted Dead Region

Management for Last-Level Caches," IEEE, 2016.

[22] G. Kurian, S. Devadas and O. Khan, "Locality-Aware

Data Replication in the Last-Level Cache," IEEE,

2014.

[23] S. Khan, A. R. Alameldeen, C. Wilkerson, O. Mutlu

and D. A. Jimenez, "Improving Cache Performance

Using Read-Write Partitioning," IEEE, 2014.

[24] A. Herdrich, E. Verplanke, P. Autee, R. Illikkal, C.

Gianos, R. Singhal and R. Iyer, "Cache QoS: From

Concept to Reality in the Intel Xeon Processor E5-

2600 v3 Product Family," IEEE, 2016.

29

[25] P. Maniotis, D. Fitsios, G. Kanellos and N. Pleros,

"Optical Buffering for Chip Multiprocessors: A 16GHz

Optical Cache Memory Architecture," Journal of

lightware technology, 2013.

[26] N. P. Jouppi, "Improving Direct Mapped Cache

Performance by the Addition of a Small Fully

Associative Cache and Prefetch Buffers," Digital

Corporation - Western Research Laboratory, Vols.

WRL Technical Note TN-14, pp. 1-36, 1990.

[27] "Cache Prefetching citing N. Jouppi," [Online].

Available:

https://en.wikipedia.org/wiki/Cache_prefetching.

[Accessed 16 Feb. 2017].

[28] K. M. Qureshi and Y. N. Patt, "Utility-Based Cache

Partitioning: A Low-Overhead, High-Performance,

Runtime Mechanism to Partition Shared Caches," in

The 39th Annual IEEE/ACM International Symposium

on Microarchitecture (MICRO'06), Orlando, 2006.

[29] P. Moorhead, "Intel's Newest Core Processors: All

About Graphics And Low Power," Forbes , 4 June

2013.

