

1

A Comprehensive Review of the Challenges and Opportunities Confronting

Cache Memory System Performance

Richard A. Kramer, Mathias Elmlinger, Abhishek Ramamurthy, Siva Pranav Kumar Timmireddy
kramerri@oregonstate.edu, elmlingm@oregonstate.edu, abhisher@oregonstate.edu ,timmires@oregonstate.edu

Oregon State University

AbstractðIn computer systems, the cache memory

architecture has a significant impact on both, system

performance and system cost. Further, the gap between

processor performance and cache memory performance

is widening at the disadvantage of the overall system

performance. In this paper, we explore the important

aspects that impact cache memory architecture

performance and cost, including: (1) An overview of

present state-of-the-art cache memory architectures. (2)

We examine the latest advances in cache controllers and

energy management. (3) We explore important aspects of

cache memory organization, including cache mapping,

spatial cache and temporal cache techniques. (4) We

provide an analysis of performance of state-of-the-art

cache memory architecture implementations including

new promising memory technologies. (5) We end by

considering future research areas that may prove

promising in narrowing the performance gap between

cache memory performance and processor performance.

Overall, improvements in cache memory architectures

stand to make a significant impact in unlocking major

improvements in high performance computer

architectures.

Keywordsðcache memory architecture; cache data mapping;

prefetching; low-power cache; cache coherency

I. INTRODUCTION

Modern high-performance computer architectures, such

as the one shown in Figure 1, would not exist without cache

memories. Nonetheless, since the first implementations of

cache memories, the imbalance between the processor

system performance and the cache memory system

performance has had a detrimental impact on the overall

system performance [2]. Amazingly, the gap between

processor system performance and cache system

performance was recognized as early as the 1970s [3].

Figure 1: Photograph of Intel Xeon processor 7500 series die

showing cache memories (center) [1]

Unfortunately, sub-optimal cache system performance

still remains as one of the largest limiting factors to optimal

system performance right up to present times. To put this

into prospective, some facts that have been recognized for

over 30 years include [3]:

1) It has been estimated that as processor gate counts

continue to inevitably increase. To be precise: for every

10-fold increase in transistor gate count, the required

memory bandwidth demand increases by 30-fold.

2) The small cache memories within a processor make up

a larger cost impact, by percentage, than the larger

external memories.

3) From the onset of cache memories in the 1970s, it has

been estimated that the required bandwidth to supply

the core processors with instructions and data exceeds

the ability of the cache memory to supply the needed

bandwidth by a factor of 300%.

Further, it is estimated that 50% of power consumption in

advanced computer architectures is a direct result of how

efficient (or inefficient) the cache memory system performs

[4][5][6]. Thus, since the introduction of cache memory

architectures, researchers have and continue to struggle with

the very same topics of cache coherency [7][8][9], write-

through versus write-back [10] and optimal cache size

[3][11][12]. To address the abovementioned limitations,

consistent topics that researchers have heavily researched,

and continue to research, include the following areas [13]:

1) Cache memory access prediction improvements related

to spatial memory access (e.g., locality of data accesses

by address) and temporal memory access (e.g., locality

of data accesses in time).

2) Optimization of cache memory associativity to main

memory. In other words, finding the optimal methods

to map cache memory to main memory.

3) The development of intelligent software compilers to

attempt to improve cache accesses based on prediction

(e.g., determining via software compilers, how likely

certain memory addresses will be accessed).

4) Improvements in the mapping of L1 cache memory

contents to that of L2 cache memory contents.

5) Advancement in the performance of mapping cache

memory to main memory via the TLB (Translation

Lookaside Buffer).

6) Hardware prefetching enhancements to better supply

optimal memory prefetcher performance.

II. OBJECTIVES AND CONTRIBUTIONS

The objective of this paper is to take the reader to the

forefront of the battle to improve the imbalance between

processor system performance and cache system

mailto:kramerri@oregonstate.edu
mailto:elmlingm@oregonstate.edu
mailto:abhisher@oregonstate.edu
mailto:timmires@oregonstate.edu

2

performance. Specifically, we focus in a number of core

areas that are further discussed below.

In Section 3 ï ñAdvances in Cache Data Management:

Prefetching, Bandwidth Management, Scheduling, and Data

Placementò, we point to the most recent research related to

improving how cache memory is used. We include a review

of novel advancements in cache prefetching, improvements

in cache memory bandwidth utilization, and optimizations of

data placement within the cache memory system

[14][15][16][17]. Given the fact that cache memory to

processor system bandwidth is a major bottleneck, we point

to new research to utilize valuable bandwidth resources in

the absolute most efficient manner.

1) As an example, we review promising techniques to

efficiently1 learn and intelligently associate an array of

different types of prefetchers to the software that is

being executed (e.g., selecting the best prefetcher based

on the application(s) being run). Based on this

technique, the solution offers a worst case 1.4% to

18.7% improvement over the best present day

techniques, while at the same time, using less memory

and logic overhead [14].

2) As yet another example, based on intelligent thread and

data placement schemes, we point to research that

provides a 46% increase in cache memory system

performance as compared to present day NUCA (Non-

Uniform Cache Architectures) [15].

In Section 4 ï ñLeading-Edge Hardware Implementations

and Opportunitiesò, we point to modern day challenges and

potential breakthroughs related to the considerable impact

that cache memories have on system power requirements,

access speed, fault tolerance and reliability [4][5][6][18].

1) We are intrigued and examine advances that have

allowed low power battery operated devices to employ

cache based systems. Such advances offer significantly

low power consumption, yet provide superior cache

performance [4][5].

2) We further evaluate and provide insight into new

opportunities to speed up cache memory accesses by as

much as 11.3% (and an encouraging 8.6% speed up on

average) when combined with present day NUAT

(Non-Uniform Access Time) memory [6].

In Section 5 ï ñSpecial Topics in Cache Memory

Architecturesò, we discuss advances in the overall processor

and cache memory core architecture [19][20][21][22][23].

1) We examine the concept of ñcloningò - a technique to

simulate actual workloads of proprietary programs to

find optimal cache memory architectures that can then

be applied to actual real-world applications. By doing

so, the processor / cache memory core architecture can

more easily be evaluated and then optimized [19].

2) We point to promising new architectures. For example,

we look to new breakthroughs in processor system stall

avoidance, providing a 6% improvement on a 4-core

processor system [23].

3) We look to advances that proactively and predicatively

identify cache contents that will not be used in the

1 Efficiency in both memory space and

hardware/logic/computational complexity implementation.

future (e.g., dead blocks) so that the unused cache

content can be replaced by relevant content, thus

reducing wasted cache energy by 20% [21].

In Section 6 ï ñConclusionò, we summarize our findings

and provide a case study of taking cache memory

architecture research from ñconcept to realityò via the Intel

Xeon Haswell processor [24]. We also consider new

frontiers for future work including optical cache memory

architectures [25].

III. ADVANCES IN CACHE DATA MANAGEMENT:

PREFETCHING, BANDWIDTH MANAGEMENT,

SCHEDULING AND DATA PLACEMENT

Advances in cache data management techniques offer a

wide range of exciting opportunities to improve overall

cache memory system performance. In this section, we

discuss advances related to cache data management

including:

¶ Advanced prefetching that employs a unique way to

monitor and then select the optimal prefetcher.

¶ Bandwidth management techniques based on the

prediction of bandwidth requirements for multiple

threads of software running on multiple processor

cores.

¶ Cache data scheduling, that creates virtual cache

memories that transcend across multiple threaded

applications and even multiple processors.

¶ Unique cache data placement management

techniques entailing algorithms and architectures

used to determine where to store data in relation to

SRAM and STT-RAM (Spin-Transfer Torque

RAM).

A. Advanced Prefetching

Cache Prefetching is a Technique used in modern day

computer processors to improve the execution speed by

prefetching instructions/data from main memory and

supplying the instructions to cache memory. Modern day

computer processors use high speed cache memory, whereas

fetching of instructions and data for processing is much

faster from cache memory as compared to accessing the

same from main memory. There are multiple techniques to

implement cache prefetching, and the techniques are broadly

classified under: (1) hardware based and (2) software based

implementations. In hardware based prefetching, there is

dedicated hardware that monitors the stream of

instructions/data being requested by the program under

execution. The hardware prefetches the next set of

data/instructions that the program being executed might

request. Figure 2 is an example of a hardware based

prefetching technique (Stream Buffer) as proposed by

Norman Jouppi [26].

In contrast to hardware prefetching, for software based

prefetching, the prefetching mechanism is applied during the

compilation time of the program. Compiler based

prefetching techniques are more widely adopted in the case

of loops that contain a large number of iterations. At

compilation time, the compiler predicts the future cache

misses and inserts a prefetch instruction based on the miss

penalty and execution time of the instruction. Through

compiler based prefetching techniques, run time true data

3

dependency issues cannot be resolved during compilation

time. In this section, we will discuss the recent trends in

cache prefetching techniques which involves hardware,

software and a combination of both mechanisms involved.

Figure 2: Stream buffer proposed by Jouppi [26] [27]

B. The Sandbox Prefetching Technique

The sandbox prefetching technique is based on the use of

a Bloom filter. The Bloom filter was proposed by Burton

Howard Bloom in 1970. The Bloom filter is a probabilistic

model to test whether a data element is a member of a set. A

query to a Bloom filter returns ñpossibly in setò if the

element is present or ñdefinitely not in setò if the element is

not present in the set.

In the paper ñSandbox Prefetching: Safe Run-Time

Evaluation of Aggressive Prefetchersò, Pugsley et al. [14]

presents a hardware base technique which provides features

of aggressive prefetching, yet avoids bandwidth and cache

capacity wastage due to aggressive prefetching. The key

feature of the sandbox prefetching technique is the reduced

latency overhead in prefetching by using a Bloom Filter

among other methods. The sandbox prefetching technique

uses the concept of global pattern confirmation and

immediate prefetch action, thereby enabling better execution

performance [14].

Figure 3: Figure showing sandbox prefetcher architecture [14]

Figure 3 shows the placement of the sandbox unit within

the memory hierarchy. As shown in Figure 3, the sandbox

unit doesnôt impact normal cache actions. The sandbox

prefetch mechanism proposed by Pugsley et al. [14] has a

separate sandbox prefetch unit and a sandbox unit. The

sandbox technique begins by monitoring multiple prefetcher

algorithms, seeking to find the most effective prefetcher

algorithm. The sandbox unit keeps the score (hits versus

misses) of candidate prefetchers, based on the outcome of

individual cache lines being a hit or a miss. Each time there

is a cache access, the corresponding prefetcher candidate

score is incremented based on a hit. Once the score of a

candidate prefetcher crosses a threshold, the prefetch

mechanism control is taken over by sandbox prefetch unit.

Figure 4 shows the sandbox prefetching actions for each L2

access [14]. Sandbox prefetching maintains a set of 16

candidate prefetchers and each candidate is evaluated in a

round-robin fashion [14].

Figure 4: Sandbox prefetching action on each L2 access [14]

Figure 5 (see next page) shows the performance of

SandBox Prefetching (SBP), normalized to a no-prefetch

baseline. The sandbox technique is compared with No

Prefetching (No PF), Feedback Directed Prefetching (FDP)

and Address Map Pattern Matching (AMPM). Sandbox

prefetching provides better performance when compared to

the other prefetching mechanisms [14].

C. Bandwidth Shifting

Current modern day microprocessors have multiple cores

and run multiple threads concurrently. Novel techniques

have been proposed, with the idea of dynamically assigning

needed bandwidth to applications based on the prefetch

efficiency of each thread.

Increased in Multicore System Efficiency Through Intelligent

Bandwidth Shifting

Jimnez et al. [16] introduces a technique that increases

multicore system efficiency through intelligent bandwidth

shifting. Data prefetching hides memory access latency, but

not all of the prefetched data is accurately fetched, thus

reducing the performance of the system. The technique

employed by Jimnez et al. provides an efficient software

mechanism for dynamically assigning memory bandwidth

for each thread, based on the predicted prefetch efficiency.

The technique assures backward compatibility [16]. The

technique further provides the following characteristics:

¶ Prefetch based bandwidth shifting to characterize

performance.

¶ Metrics to estimate prefetch usefulness.

¶ Novel bandwidth shifting mechanisms to increase

performance.

¶ Evaluation of bandwidth shifting.

4

Figure 5: Performance normalized to no-prefetch baseline [14]

To expand, Figure 7 shows the throughput and

bandwidth consumption of a subset of benchmarks defined

in the SPEC CPU2006 benchmark specification. Figure 7,

indicates Deep, Shallow and OFF regions. In the Deep

region, the prefetcher uses the longest distance available for

prefetching. The Shallow region uses the shortest distance

for prefetching. Lastly, the OFF region refers to the

prefetching action being turned off. Figure 7 clearly indicates

that when more than 16 threads are being used, the

bandwidth usage and performance saturates. All of the

performance benchmarks are evaluated on an IBM POWER7

machine. Jimnez et al. [16] states that the benchmark results

are not exclusive to the IBM POWER7 machine used by

Jimnez et al. The efficiency of prefetching applications

varies, depending on the memory access pattern and the

availability of bandwidth. Jimnez et al. [16] also states that

there were no severe impacts observed when changing to

aggressive prefetch actions. The proposed technique of

bandwidth shifting uses only DEEP and OFF settings for the

prefetching mechanism [16].

The bandwidth shifting algorithm proposed by Jimnez et

al. [16] uses an iterative approach. Initially the configuration

is set to the most aggressive prefetch setting. Next, the

algorithm computes the usefulness of prefetching an

instruction for each thread and tabulates the result. The

evaluation of prefetch usefulness is done by frequently

turning on and off the prefetching for each thread and then

measuring the Instruction Per Cycle (IPC) and bandwidth

usage under both the on and off configurations. Figure 6

shows the base implementation of the algorithm [16].

The base algorithm shown in Figure 6 introduces a

problem: there is a lack of hardware resources while high

Prefetch Usefulness (PU) threads are running on the system

due to the limited number of prefetch streams that can be

allocated. To overcome this problem, as shown in Figure 8,

Jimenez et al. [16] introduced a modified base algorithm

which increases performance by 33% when compared to the

performance of the algorithm shown in Figure 6 [16].

Figure 6: Base bandwidth Shifting algorithm [16]

Figure 7: Throughout and memory bandwidth consumption characteristics for a subset of benchmarks [16]

5

Figure 8: Modified base algorithm [16]

In the modified algorithm shown in Figure 8, the initial

mechanism is the same as that of the base algorithm as

shown in Figure 6. A number of additional steps are also

added as follows:

¶ Step 1: Measuring system performance by turning

ñoffò the prefetching for a thread.

¶ Step 2: Testing if there was a positive impact on the

system when the prefetch mechanism is turned

ñoffò for a given thread.

¶ Step 3: If there was improvement by turning ñoffò

prefetching for a given thread, a decision to turn

ñonò or ñoffò the prefetch action for a given thread

will be considered again in the next iteration.

Figure 9 illustrates the positive effect of the bandwidth

shifting algorithm on system performance. Figure 9 plots a

function of the prefetch friendly algorithm ñbwavesò (which

we assign the value ñzò to the number of simultaneous thread

instances running) and the prefetch unfriendly algorithm

ñomnetppò (which we assign the value ñxò to the number of

simultaneous thread instances running) as benchmarks.

Specifically, Figure 9 shows the amount of speedup for 32

processes running simultaneously, with the x-axis

representing the number of unfriendly algorithm ñomnetppò

simultaneous thread instances running (ñxò) as a function of

the number of friendly algorithm ñbwavesò simultaneous

thread instances running (ñzò). Thus, x + y = 32 [16].

Figure 9: Effect on bandwidth shifting on system performance with

prefetch efficient (bwaves) and inefficient (omnetpp) threads [16]

D. Scaling Cache Hierarchies Through Computation and

Data Co-Scheduling

Today, Non-Uniform Cache Architecture (NUCA) is the

most widely used method to extract improved performance

from cache memory systems. Advanced techniques of

NUCA include: (1) Reactive Non-Uniform Cache

Architecture (R-NUCA) and (2) Static Non-Uniform Cache

Architecture (S-NUCA). Recently, better techniques that

further improve R-NUCA and S-NUCA have been proposed.

Such improvements provide better cache memory

management and improved thread scheduling to derive better

system performance. One such technique is referred to

Computation and Data Co-Scheduling (CDCS) [15].

Computation and Data Co-Scheduling technique (CDCS)

One example of cache memory scheduling is disclosed in

the paper ñScaling Distributed Cache Hierarchies through

Computation and Data Co-Schedulingò by Beckman et al.

[15]. Beckman et al. proposed a technique called

Computation and Data Co-Scheduling (CDCS), a technique

that relates to the placement of threads and data using

distributed shared caches in a multiprocessor environment.

The main contributions the Beckman et al. [15] paper are as

follows:

¶ A novel thread and data placement scheme that

considers both data and access intensity by threads

across multiprocessor tiles.

¶ An enhanced design of a geometric sampling curve

monitors that scales within a very large NUCA.

¶ Hardware that enables incremental reconfiguration

of NUCA caches.

The CDCS technique then tags data to the virtual cache

using virtual cache ñidsò (IDs). For every L2 level cache

miss using the VC (Virtual Cache) ñidò, CDCS determines

where the cache line resides in the memory subsystem. A

Virtual Translation Buffer, referred to as a ñVTBò, as shown

in Figure 10, stores the configuration for all virtual cache

memory groups that a given executing thread can access.

Virtual cache configurations are periodically changed by

CDCS software (every 25ms); changing both the bank and

partition sizes on the fly during runtime, based on how data

is accessed by the executing threads. A block diagram of

how the virtual cache is reconfigured is shown in Figure 10.

Figure 10: An example of LLC access using CDCS [15]

6

Figure 11: CDCS implementation with 64 tile CMP [15]

Figure 11 shows the hardware black box hardware

implementation of CDCS. Each tile has a core and a slice of

Last Level Cache (LLC). An on-chip network topology

establishes connection between a tile and the memory

controllers that reside at the edges.

CDCS is based on NUCA methodology and allows

software to divide each cache bank into multiple partitions.

Collections of portioned caches are grouped and are made

visible to software threads as a single cache. The grouping of

the caches provides the software with flexibility to define

multiple virtual caches and to configure them into different

sizes of virtual cache memory [15].

Figure 12 shows the thread and data placement under R-

NUCA techniques, where thread private data is stored for

threads in the processorôs local memory bank. Figure 13

shows how the thread and data is placed using the CDCS

technique provides a 400% higher speed-up over the R-

NUCA technique [15].

Figure 12: R-NUCA workload organization schemes on 36 tile

CMP [15]

CDCS software provides different levels of virtual

caches. During execution, each thread is provided with a

thread private cache at the OS-level. Common data between

the threads of the same process are placed in a process

private cache, and common data between the processes are

placed in a global virtual cache. Based on these techniques,

faster access to data is provided and cache pollution is

reduced. The CDCS technique provides a 46% increase in

performance when compared other NUCA techniques, and

provides 36% better energy efficiency when compared to S-

NUCA [15].

Figure 13: CDCS workload organization schemes on 36 tile CMP

[15]

E. Adaptive Placement Policies for Data in Cache Memory

Systems

Another leading area of research is the intelligent

placement of cache memory contents in differing types of

memory within cache memory systems and main memory.

For example, a hybrid of cache memory system consisting of

DRAM, SRAM and even STT-RAM.

An Adaptive Placement and Migration Policy for an STT-

RAM Based Hybrid Cache System

One such paper that considers new data placement

polices for data blocks in cache memory systems is the paper

ñAdaptive Placement and Migration Policy for an STT-

RAM-Based Hybrid Cacheò by Wang et al. [17]. \Wang et

al. [17] proposes an Adaptive block Placement and

Migration policy (APM) for hybrid caches. The technique

proposed by Wang et al. places the block in either STT-

RAM (Spin-Transfer Torque ï RAM) or SRAM, based on

an adaptive placement and migration policy algorithm. The

technique proposed by Wang et al. combines the advantages

of low leakage power and high packing density offered by

STT-RAM with the low write overhead of SRAM [17].

To expand, Wang et al. categorizes LLC cache accesses

into three distinct classes: (1) core-write, (2) prefetch-write

and (3) demand-write. Turning to (1) - core-write, a core-

write is a write from the core to the LLC. For a write through

core cache, a core-write entails directly writing from the core

7

through to the LLC. For a write-back core cache, a core-

write entails evicting dirty data from the core cache and a

write back to the LLC. For (2) - prefetch-write, a prefetch-

write is a write replacement of the block from LLC caused

by a prefetch miss. For (3) - demand-write, a demand-write

is a write block replacement from LLC caused by a demand

miss. The technique proposed by Wang et al. [17] is based

on block replacement if the request is initiated by a write

access. Wang et al. [17] introduces an intelligent block

placement policy as follows:

¶ SRAM should be used for the majority of the write

actions, thus avoiding write overhead involved in

STT-RAM.

¶ Frequently used blocks should be placed in LLC to

achieve reduced memory access latency, reduced

overhead, and less complexity within the overall

design.

¶ Block placement is often initiated by a write access

to the LLC which Wang et al. further

subcategorizes to be either a (1) prefetch-write, (2)

core-write or (3) demand write as discussed above

[17].

Figure 14: Distribution of LLC write accesses. Each type of write

access accounts for a significant fraction of total write accesses

[17]

Figure 14 shows the breakdown of block placement for

(1) core-write, (2) prefetch-write and (3) demand-write to the

LLC. Wang et al. [17] further teaches two types of ranges:

(1) read-range and (2) depth-range, which is further

described as follows:

¶ Read-Range: The read-range is a property of a

cache block that fills the LLC by a demand-write or

prefetch-write request. It is the largest interval

between consecutive reads of the block from the

time it is placed into the LLC until the time it is

evicted [17].

¶ Depth-range: The depth-range is a property of a

core-write access. It is the largest interval between

accesses to the block from the current core-write

access until the next core-write access to the same

block. The ñdepthò refers to how deep the block

descends into the LRU stack before it is accessed

again [17].

In Figure 15, ñRaò represents the Read block ñaò and

ñWaò represents the Write block ñaò. The distance between

successive block reads is referred to as ñread-rangeò as

discussed above. The distance between a write access to that

of reading the same data is referred to as ñdepth-rangeò as

discussed above. ñWaò equals 0 and represents an evicted

block from cache, e.g., the least used data from cache is

kicked out from the cache memory. Read-range/depth-range

is further classified as follows [17]:

¶ Zero-read/depth-range: Data is filled into the LLC

by a prefetch or demand request/core-write request,

and it is never read/written to again before it is

evicted.

¶ Immediate-read/depth-range: The read/depth-range

ñIò (which is further set to be smaller than a

parameter ñmò, where m = 2 is the number of

SRAM ways in the STT-RAM/SRAM hybrid cache

configuration).

¶ Distant-read/depth-range: The read/depth-range is

larger than m = 2 and at most, the associatively of

the cache set which is 16 in STT-RAM/SRAM

configuration.

Figure 15: Example illustrating read-range and depth-range [17]

The technique proposed by Wang et al. [17] uses the

read-range to analyze the access patterns of LLC. Figure 16

shows each access pattern and each category is further

classified based on read-range/depth-range. A summary of

the results are as follows:

¶ Zero-read/depth-range corresponds to 26% of all

prefetches on average. For prefetch-writes, because

the category is never used until a miss occurs and

then a block is evicted from cache, the prefetched

block should be placed in SRAM as to avoid the

write overhead of STT-RAM.

¶ Immediate-read-range corresponds to 56.9% on

average. The data associated with this category

should likewise be placed in SRAM to provide fast

access for immediate use. Using SRAM for this

category mitigates STT-RAM involvement in

eviction once the cache block is dead.

¶ Distant-read corresponds to 17.5% on average. For

this category, data should be placed in STT-RAM

to make use of large capacity to avoid cache misses.

In the proposed design by Wang et al. for core-write

access misses, the data is directly written back to the main

memory. Zero-read-range blocks should be bypassed from

cache because the data will not be used except for eviction

from cache of a dead block. Thus, bypassing zero-read-

range blocks will reduce the write operations to LLC.

8

Figure 16: The distribution of access pattern of each type of LLC write access [17]

Figure 17: Flow chart of the adaptive block placement and migration mechanism (errors as shown in the original) [17]

Figure 17 shows the flow chart of the proposed design.

Each block is associated with a prediction bit indicating

whether the block is dead. On a cache miss the prefetched

data is placed into the SRAM; and the prediction bit that

predicts if the block is dead is set to 1 (e.g., it is assumed

dead on arrival). An access bit pattern predictor, predicts

whether the block in SRAM is dead. The proposed scheme

reduces the overhead of STT-RAM by using the following

schemes [17]:

¶ By bypassing dead on arrival blocks.

¶ By introducing an SRAM line filter to filter write

operations caused by inaccurate and immediate-

read-range prefetch requests.

¶ By placing frequently used core-write blocks in

SRAM.

The access pattern predictor makes a prediction in the

following three conditions: (1) when a core-write request is a

hit within the STT-RAM lines, the write burst prediction

table will be accessed to predict whether it is a write burst

request; (2) for each read hit request within the SRAM lines,

the dead block prediction table will be accessed to predict

whether it is a dead block; (3) on a demand-write request, the

dead block prediction table will be accessed to predict

whether the request is a dead-on-arrival block request [17].

Overall, the block placement technique proposed

achieves higher performance by placing distant-read-range

blocks in STT-RAM and by bypassing the zero-read-range

cache lines in order to avoid write overhead; SRAM

provides better efficiency in evicting inaccurately fetched

data blocks.

IV. LEADING-EDGE HARDWARE IMPLEMENTATIONS

AND OPPORTUNITIES

Given the steadily growing market for battery-powered

devices (e.g., mobile phones or wireless embedded sensor

networked devices), energy efficiency has become a crucial

factor in the development process. Advances in technology

have and will further lead to even smaller device sizes,

driven by voltages as small as possible. Given these

advances, the systemôs overall energy dissipation will be

influenced by up to 50% by the cache. New techniques have

been proposed that optimize already existing architectures to

minimize the overall power consumption in order to provide

longer battery life, mitigate the design limiting effects of

temperature, and provide better performance [4][5][18].

9

On-chip cache memories make up a large fraction of the

overall chips size and therefore play a significant role in the

overall power consumption of the system. Recent research

has shown that the following factors influence the energy

consumption by a significant amount [4][5][18]: (1) static

leakage current, especially in multi-port architectures, (2) the

use of Error Detection Codes (EDC) and (3) the use of Error

Correction Codes (ECC). Additionally, a new concept that

utilizes the charge leakage of a cell to improve access

latency and ultimately also improves the energy efficiency is

introduced. The following sub-sections provide a brief

introduction into each of these areas.

A. Leakage Current

Two types of leakage currents mainly contribute to the

overall cache leakage current: (1) cell leakage current and (2)

bit line leakage current. Further, there are a number of

factors that increase leakage current, including the use of

multi-port caches and the fact that leakage current scales

proportionally with the area of the circuit [4]. In the

following, we explore two different promising approaches to

reduce the cache memory power dissipation, namely,

Dynamic Memory Configuration and Software Self-

Invalidation and Data Compression.

1) Dynamic Memory Configuration

Figure 18 and Figure 19 show a six transistor single-port

and dual-port SRAM cell, respectively. The additional word

lines needed to access transistors T7 and T8 almost double

the silicon area of the single-port configuration. Keeping the

bit lines high, as well as pre-charging, contributes

significantly to the overall power dissipation [4].

Figure 18: Single-port SRAM cell [4]

Figure 19: dual-port SRAM cell [4]

The following equations describe the leakage currents

per cell displayed in Figure 18 and Figure 19 [4]:

Ὅ Ὅ Ὅ Ὅ

Ὅ Ὅ Ὅ Ὅ Ὕ

Previously used techniques to reduce leakage current

were based on a fixed bank size and employed duplicated

word and bit lines at the expense of either moderate

performance degradation or a large area overhead. Bajwa et

al. [4] proposes a new cache architecture using isolation

nodes to partition a cache memory block into two virtually

independent sections that also employ real-time access of

addresses via multiple ports.

Figure 20 shows the proposed placement of the Isolation

Control Line (ICL) and isolation node on the corresponding

bit lines to divide the block into an upper port and lower

port, respectively. This approach enables dual-port access

without the need of a second pair of bit lines and thus

reduces the leakage current and the silicon area needed. Even

though additional ICLs are placed every n word lines, Bajwa

et al. [4] states that the performance degradation for a value

of n = 8 poses no negative effects. The statistical pattern of

accesses of addresses of targeted applications determines the

overall placement of the nodes.

Figure 20: ICL and Isolation node placement [4]

The efficiency of this dynamically partitioning is based

on an applied algorithm to determine the ICL and isolation

node placement. Considerations that go into determining the

optimal algorithm include: delay, power dissipation and the

overall complexity of the proposed algorithm. Bajwa et al.

[4] evaluates two algorithms: (1) an algorithm for optimal

partitioning that minimizes bit line latency and power

dissipation and (2) an algorithm that does not require a new

partition for every memory access. The pseudo code for

algorithm (1) is as follows:

10

 addr(A) <1:n>; addr(B) <1:n>;

 where adr(A) = i > addr(b) = j;

 if i = j + 1 return ICL(j)

 else return ICL(j) and ICL(i-1)

The pseudo code for algorithm (2) is as follows:

 addr(A) <1:n>; addr(B) <1:n>;

where adr(A) = i > addr(b) = j;

k = current ICL;

if (j Ò k < i) return NUL (no new DMP);

else return (j + (i-j)/2);

Applying the above described dynamic memory

configuration reduces the silicon area that is needed because

no additional bit lines and pass transistors are needed. This

results in a reduced leakage current and reduced bit line pre-

charge current by a factor of 50% of the value of a typical

hardwired multi-port memory. Lastly, the dynamic

configuration also introduces less latency due to shorter

active bit lines. The leakage current of a memory core with

N rows and M columns can now be calculated using the

following formula:

Ὅ
ὔ

ς
ὓ Ὅ Ὅ Ὅ Ὕ

A paper entitled ñCache Memory Architecture for

Leakage Energy Reductionò by Tanaka et al. [5] states that

future high performance processors need even larger

amounts of cache to bridge the speed gap between the

processor and the external memory. Given the increase in

cache size, it is said that energy dissipation in cache memory

makes up 50% of the total energy dissipation of the

processor system. Higher transistor counts and increased

clock frequency result in decreased battery lifetime and

higher temperature. To ensure performance improvement of

future microprocessors, it is necessary to improve the energy

efficiency of cache memory systems.

2) Software Self-Invalidation and Data Compression

Tanaka et al. [5] introduces a low-energy cache memory

hierarchy for on-chip multiprocessors, which exploits gated-

Vdd transistors and explicit gated-Vdd control. Two

mechanisms are introduced: (1) leakage energy reduction by

software self-invalidation and (2) leakage energy reduction

by data compression. The memory hierarchy is displayed in

Figure 21. It consists of L1 instruction and data caches, a

write buffer, a L2 unified write-back cache on chip, and an

external main memory. The compressor and decompressor

blocks are used to exploit energy leakage reduction as

explained later.

Cache blocks can become invalid if they receive an

invalidation request. Turning off these invalid blocks using a

gated-Vdd results in significant energy savings. In addition

to this method, a self-invalidation mechanism to further

increase the number of blocks that can be turned off is

applied. This mechanism makes use of a modified load/store

instruction called ñlast-touch load/storeò. In addition to the

conventional load/store function, the new instruction can

validate cache blocks after accessing them.

Figure 21: Cache memory hierarchy [5]

The invalidation is based on two conditions: (1) a cache

block is invalidated at the same time as it is accessed, and (2)

a word is marked when it is accessed. The cache block is

invalidated when all words in the block get marked [5].

To enable the abovementioned improvements, slight

modifications to the conventional L1 cache memory

structure are necessary. Last-touch flag bits are added as a

part of the L1 cache tag information. Each flag corresponds

to a word in the block. Figure 22 illustrates the memory

structure for a 16-byte block made up of four words each.

Tanaka et al. states that ñWhen a last-touch-word load/store

instruction is executed the corresponding flag bit is cleared.

On the other hand, when a last-touch-block load or store

instruction is executed, all flag bits are cleared (as depicted

in the second row in the figure). Then, a block is invalidated

when all the flag bits are cleared.ò [5].

The gated-Vdd design is implemented as shown in Figure

23. It is worth mentioning that this figure is conceptual since

the address tag and data parts of the block relate to one or

more gated-Vdd transistors.

Figure 22: L1 cache memory structure [5]

The data compression technique employs data

compression thresholds of ¾, ½ and ¼. Compressed blocks

are stored in the L2 cache and the remaining space is turned

off using gated-Vdd transistors. The overhead of

compression and decompression is negligible because the L2

cache access frequency is not high. In general, a compression

ratio as small as possible is desirable, because data

11

compression as a whole results in higher processing cost,

larger chip area, and longer latency. These factors are

important when considering the tradeoffs between cost,

performance, and the amount of energy conserved [5].

Figure 23: (conceptual) L1 gated-Vdd control [5]

The tag information for the L2 cache is shown in Figure

24. ñc1ò and ñc0ò correspond to the compression thresholds

used above. A combination of ñ00ò equals no compression,

ñ01ò equals ¾ compression, ñ10ò equals ½ and ñ11ò equals

¼ compression (of the original size of the data). Three

transistors are needed to support this feature, as shown [5].

Figure 24: L2 gated-Vdd control [5]

Five kernel programs in the SPLASH-2 suite were used

for the evaluation of the software invalidation technique.

Table 1 contains the input data size and input file. Table 3

displays the simulation results, normalized to ñbaseò, which

refers to an execution without gated-Vdd control. ñinv.offò is

with gated-Vdd control of invalid blocks and ñlast-touchò is

the execution with invalid blocks supported by the modified

last touch instructions.

Table 2 lists the number of self-invalidations performed

by last-touch word or block instructions. The results in Table

2 and Table 3 show that leakage energy was significantly

reduced for last touch instructions for ñLU-noncontig[uous]ò

and ñRADIXò [5].

Table 1: Input data sizes / input file for SPLASH-2 programs [5]

Table 2: The number of self-invalidations [5]

Table 3: Results of last-touch load/store scheme in L1 cache [5]

B. Error Detection Codes (EDCs) and Error Correction

Codes (ECCs)

Energy particles can cause soft errors in cache memories.

Modern processors employ EDCs and ECCs to counteract

these errors. Employing these techniques result in a

significant overhead in terms of area and energy. Farbeh [18]

proposes a new cache architecture to reduce energy

consumption and reduce the area overhead that result from

using EDCs and ECCs in L1 caches.

Soft errors are a major reason for system failures. They

can appear in the shape of Single Event Upsets (SEUs) or

Single Event Multiple Bits Upsets (SEMUs). The

technological advances mentioned in previous sections

(improvement of feature size and supply voltage) result in a

new challenge of handling the increased amount of SEUs

and SEMUs. In a 40nm feature size, the probability of an

SEMU caused by a particle strike is about 40%; this

percentage increases if low power techniques are applied

[18].

The newly proposed architecture called ñPer-Set

Protected Cache (PSP-Cache)ò makes use of the fact that in a

set associative L1 cache, data words in all cache ways are

accessed in parallel. This enables minimization of the

number of redundant bits without reducing the protection

capability of EDCs and ECCs [18].

Figure 25 displays a conventional cache architecture (left

side) and the proposed architecture (right side). In a

conventional cache architecture, data is applied to ñWay

Selection Logicò. Further, the output of ñTag Comparison

Logicò selects data based inputs from the cache.

12

Figure 25: Abstract view of (left) conventional cache architecture and (right) proposed PSP cache architecture [18]

This data then proceeds to the EDC/ECC

Checker/Generator Logic and is delivered to the data bus. As

one can see in the right-hand side of Figure 25, a single code

gets assigned to the data of all cache ways and the EDC/ECC

Checker/Generator Logic operates on all accessed data [18].

Further, a parity code is applied, which is mostly used to

protect instruction and data cache data integrity. For the

parity code, the number of redundant bits needed to detect a

specific number of bit errors is independent of the data

length. Therefore, the number of bits required to protect a

single cache way is equal to the number of bits required to

protect all N cache ways [18].

ñThe main features of the proposed architecture are as

follows:

¶ A negligible modification of cache architecture is

required to implement PSP-Cache;

¶ It is applied to the tag array of cache memories in

addition to data array. Moreover, both D-cache and

I-cache can take advantages of this architecture;

¶ It is independent of cache protection granularity.

Hence, all set-associative caches with per-X-bit

EDC/ECC protection, when X is between a single

byte to the cache line length, can be transformed to

PSP-Cache architecture;

¶ The efficiency of the proposed architecture

improves by increasing the cache associatively.ò

[18]

This architecture was evaluated in terms of energy

consumption, area, and reliability.

1) Energy Consumption and Area Overheads

Redundant bits are the major source of area and energy

overheads. The Checker/Generator unitôs contribution to

both area and energy overhead is smaller than 1% and is

therefore negligible. The results displayed in Table 4 show,

that the reduction in the number of redundant bits in PSP-

Cache is proportional to the cache associatively. Required

redundant bits are reduced by 50%, 75%, 87.5% in 2-way, 4-

way and 8-way associative caches, respectively [18].

Figure 26 displays the improvement in energy overhead

of PSP-Cache for different cache architectures, normalized

to the baseline cache. An overhead reduction by 49%, 73%

and 85% for 2-way, 4-way and 8-way set-associative caches

can be achieved, respectively.

2) Reliability Analysis

For this analysis, the effect of the newly introduced

architecture on SEUs and SEMUs is taken into account. It

was concluded that the architecture does not hurt the

capability to detect and correct SEUs or SEMUs, regardless

of the data length. Thus, it does degrade the protection

capability of EDC/ECC codes [18].

Table 4: Number of redundant bits required to protect cache for

different cache associatively and protection codes [18]

Figure 26: Normalized dynamic energy for baseline cache and

PSP-Cache [18]

