

	 Page	1	

An Analysis of Dynamic Flow Scheduling for Data Center Networks
An analysis of the paper “Hedera: Dynamic Flow Scheduling for Data Center Networks” [1]

Submitted by: Richard A. Kramer, Oregon State University

Abstract

This paper provides an analysis of the article
“Hedera: Dynamic Flow Scheduling for Data
Center Networks” [1] and the related subject
matter (“Hedera” and/or “Hedera’s”
henceforth). Written in 2010, “Hedera’s” goal is
to optimize dynamic flow scheduling in data
centers.

In short, “Hedera” presents:

“[A] scalable, dynamic flow scheduling
system that adaptively schedules a multi-
stage switching fabric to efficiently
utilize aggregate network resources”

(see “Hedera” at Abstract).

This paper provides a detailed analysis of
“Hedera” in the following sections:

1. The Problems to be Solved
2. The Proposed Solutions
3. Strengths of the Proposed Solutions /

Effectiveness
4. Weaknesses of the Proposed Solutions /

Additional Considerations
5. Conclusion

Overall, “Hedera” proves effective based on
solid simulation and testbed results for a given
set of assumptions and constraints (e.g. large
flows, commodity switches, packet transmission
dynamics, etc.). The solid simulation results
indicate that “Hedera’s” performance is 96% of
optimal (e.g. as compared to non-blocking
throughput) and a 113% improvement over
ECMP static hashing [2]. Further, “Hedera’s”
testbed results outperformed ECMP in a wide
variety of test cases. Thus, “Hedera” appears to
be effective in (1) paving the way for improved
dynamic flow scheduling for data center
networks and (2) opening up new possibilities
for additional research to obtained even better
dynamic flow scheduling performance within
data center networks.

1. The Problems to be Solved

“Hedera” provides an analysis of the problems
confronting “Dynamic Flow Scheduling for Data
Center Networks” (id. at Title). The problems
confronting data center networks include:

1. Data center designers have no way of
knowing how data center network demand
and workloads will vary over time, thus
designers need a dynamic solution that can
adapt over time.

2. The data center network system must
operate using commercially available
commodity system components without
requiring protocols and/or software
changes.

3. Inter-rack network bottlenecks caused by
virtualization technology [3] including
separate physical servers used to multiplex
customers across multiple machines make
it difficult to ensure the virtualization
instances will run on the same physical
rack.

The above problems are compounded by the fact
that multi-rooted tree like networks structures
provide many paths between host pairs, yet have
decreasing aggregate bandwidth when moving
up to the top of the hierarchical tree structure. At
the time “Hedera” was written, ECMP with static
hashing [2] was a prevalent means to route data
flows, yet ECMP with static hashing resulting in
“collisions overwhelmed switch buffers”, thus
depleted network system performance (see
“Hedera” at Section 1).

“Hedera” addresses the problems noted above
by collecting flow information, dynamically
computing non-conflicting paths for the data
flows, and then programming commodity
switches to reroute the traffic according to the
newly computed non-conflicting paths.

	 Page	2	

2. The Proposed Solutions

“Hedera” proposes solutions (e.g. algorithms) to
optimize data flow network performance.
Specifically “Hedera” proposes two algorithms
to provide dynamic flow scheduling
improvements:

1. Global First Fit (“GFF”).
2. Simulated Annealing (“SA”).

The proposed solutions are targeted for
implementation on commodity switches and
unmodified hosts (e.g. off-the-shelf components).

“Hedera’s” proposed solutions are targeted at
improving network performance within the data
center network by providing optimized/improved
dynamic flow schedules to the switch fabric, to
further compliment ECMP (see id. at Section
2.2). More specifically, “Hedera” performs the
following tasks:

1. Detects large flows / Estimate the natural
demand for large flows within the system.

2. Computes “good” non-conflicting paths for
the large flows.

3. Installs the new computed “good” paths to
accommodate the large flows within the
switch fabric / instructs the switches to
reroute.

“Hedera” provides an in-depth analysis of the
abovementioned GFF and SA algorithms to
accomplish the objective of optimized data flow
network performance. An overview of the GFF
and SA algorithms is as follows:

Global First Fit (“GFF”): As the name
indicates, when a new flow is detected, the
GFF algorithm globally searches for the first
fitting path that can accommodate the new
flow and then reserves the capacity within
the system to accommodate the new flow.
As a result, the system must maintain a
record of the reserved capacity of every link
within the network and release the reserved
capacity when the flow expires.

Simulated Annealing (“SA”):

Annealing is the process of heating a
material (e.g. adding energy) such as metal
and then allowing the material to slowly cool

(e.g. the decrementing or decreasing of
temperature). As the “simulated annealing”
name implies, “Hedera” simulates annealing
as follows:

1. The analogous initial annealing heating

“energy” (“E”) is equated to the total
exceeded network capacity over all links.

2. The analogous annealing decrementing /
decreasing of “temperature” (“T”) is
equated to the number of iterations that
the SA algorithm “for loop” is executed.

3. During each iteration of the SA “for
loop” (e.g. decrease in temperature), the
neighboring “state” (“s”, mappings of
destination hosts to core switches)
available capacity is compared to the
current selected state, seeking the lowest
“energy”. For each iteration, when a
lower neighboring energy value and state
(“eN” and “SN”) is seen, the algorithm
stores the better neighboring energy
value and state as the “best” lowest
energy and state (“eB” and “sB”).

4. Whereas for the next iteration and
assignment of the state “s” to
neighboring state “sn” is further
determined by a probabilistic based
function “P” and a randomizer, seeking a
“reasonable” best case.

Thus SA (as compared to GFF) is an algorithm to
iteratively seek, not just the “first fit[ting]” link
that can accommodate the large flow, but also a
link that is reasonably best suited to
accommodate the large flow. I find SA to be an
important improvement over GFF for this very
reason.

3. Strengths of the Proposed Solutions /
Effectiveness

In my opinion, “Hedera” proves effective related
to a number of important factors to improve
dynamic flow scheduling within data center
networks. The areas that I found that “Hedera”
proves effective include:

1. Ease of Implementation
2. Favorable Simulation Results
3. Favorable Testbed Results
4. Ability to Optimize Algorithms Based on

Need

	 Page	3	

Ease of Implementation: “Hedera’s” GFF and
SA algorithms are very simple to implement and
therefore allow for implementation on an FPGA
which is critical to real world success. In fact,
“Hedera” was implemented using the
commercially available “NetFPGA 4-port GigE
PCI card switch[]” [4] as shown below which
includes a XILINX Vertex II FPGA.

Figure 1: NetFPGA Technical Specifications
[4]

Favorable Simulation Results: To prove its
effectiveness, “Hedera” provides simulation
results for the implementation of GFF and SA on
an 8,192 host data center. The simulation
delivered 96% of optimal performance and a
113% improvement over static load balancing
methods such as ECMP static hashing [2] (see id.
at “Hedera” Abstract). The simulation results
included a well thought-out strategy to cover
many scenarios for network traffic including
TCP slow start and AIMD (see “Hedera” Section
5.5 and “Glossary of Terms Used” below).

Ability to Optimize Algorithms Based on
Need: Further, when comparing GFF to SA, a
number of advantages and disadvantages
between the two algorithms were recognized,
thus allowing for system design choices based on
overall system needs. The advantage and
disadvantages for GFF as compared to SA are as
follows:

Global First Fit (“GFF”):
 Fast processing time: With GFF, flows can

be rerouted quicker when the following
equation is true:

Process_Time(GFF) [a function of (k/2)2] <
Process_Time(SA) [a function of fave]

Where “k” is the number of switch ports and
fave is the average number of flows.

Thus in a system with a large number of average
flows and “k” is comparatively low per the
above equation, GFF will process faster.

As discussed below a disadvantage of the GFF
algorithm is that GFF finds the first path
available to accommodate a large data flow
versus a path that may be more optimal (see
discussion “Reasonably best suited path versus
first path” below).

Simulated Annealing (“SA”):
 Reasonably best suited path versus first

path: The SA algorithm is an iterative
process and does not seek to find the
absolute best link, but rather a link that is
reasonably best suited to accommodate the
large flow. Finding the reasonably best
suited path for the large flow is an
improvement as compared to GFF because
GFF simply assigns for first path that can
accommodate the flow, thus not necessarily
the reasonable best suited path.

 Slower processing time: The SA algorithm
is an iterative process using flow demand
data from the prior states in order to predict
the reasonably best suited future state data
path(s). As a result, the time to process SA
is dependent on the number of average flows
to a given host. Because of this relationship,
SA generally takes longer to process as
compared to GFF (see “Process_Time(GFF)”
above).

Each of the above factors are important because
they allow for system design choices when
designing a data center based on the types of
services proved.

Favorable Testbed Results: To proves
“Hedera’s” effectiveness, “Hedera” also provides
testbed results based on using 16 open socket
hosts and a non-blocking 48-port gigabit
Ethernet switch. The switches are based on the
abovementioned NetFPGA platform, which
further implements OpenFlow [5]. A wide range
of traffic patterns were tested on the testbed
including a full data shuffle to simulate
MapReduce/HADOOP operations [6].

	 Page	4	

From this, “Hedera” provided superior
performance over ECMP in all cases, typically
by a significant margin (see “Hedera” at Fig. 9).

4. Weaknesses of the Proposed Solutions /
Additional Considerations

While I found “Hedera” to be highly effective in
providing dynamic flow scheduling for data
center networks, because the subject matter is
broad with an infinitely wide solution set, I did
understandably find a number of weaknesses (see
Section “Weaknesses” below) and areas to
expand upon (see Section “Additional
Considerations”, below).

Weaknesses: “Hedera” restricts its analysis
and/or accepts a number of assumptions that may
not be accurate in the real world. These
assumptions are important to consider when
designing real-world systems. Specifically,
“Hedera’s” limitations and/or assumptions
include the following factors to consider when
designing real world systems:

1. “Hedera” adopts the use of “cheap edge

switches” with many vertical layers versus
more expensive horizontally wide
architectures using more expensive routers
(see “Hedera” at Section 2).

2. Hedera only supports “large flows” (see id.
at Section 3) that exceed a threshold of
“100 Mbps… 10% of each host’s 1GigE
link” (see id. at Sections 3.1). Further only
a RTT of 100 µs is mentioned in “Hedera”.

3. Bandwidth is assumed to be limited only
by the sender’s / receiver’s maximum NIC
maximum capacity (see id. at Section 4.2).

Further, the effectiveness of “Hedera” related to
a number of real world factors were not
evaluated, including:

1. There was no modeling of individual
packets (and thus packet loss and
retransmission timeouts). As a result,
“Hedera” assumes that TCP Reno and
New Reno [7][8][9] would perform
worse, but it is not known how much
“worse”.

2. Inter-flow dynamics were not simulated,
however a number of scenarios such as a
data shuffle were tested on the testbed.

While I believe a number of the above noted
factors are reasonable compromises to allow for
a manageable solution set to be evaluated, on the
other hand the omission of fully evaluating inter-
flow dynamics between hosts appears to be a
potentially problematic omission. I believe the
omission of fully evaluating inter-flow dynamics
is important because “Hedera’s” performance
could potentially be impacted by various
protocols, collision schemes, and applications /
services (both present and future).

Additional Considerations: From “Hedera”, a
number of improvements are brought to light as
possible extensions, including:

First, the “Hedera” simulation and testbed
scenarios each modeled large flows, whereas the
future state of the flow was unknown to the GFF
and SA algorithms. One possible extension to
“Hedera’s” algorithms may be to characterize the
various applications / services provided by a data
center (for example, build a characteristic load
demand table for each application based on the
historical demand for a given application /
service), thus the next “time tick” for the flow
would be predicatively known rather than
unknown.

From this, given the future predictive state of the
flow, an opportunity appears to exist to improve
“Hedera” to support optimization of dynamic
flow scheduling based on the above mentioned
prediction data. For example, information may
be predicatively known for a given application
on how large the flow will be (both time duration
and accumulative data size), thus allowing for
more accurate scheduling reservations to be
made.

Second, it would seem that the evaluation and
better simulation of inter-flows would be an area
worth researching further.

Third, it would seem useful to test the scalability
of “Hedera” against other flow sizes in addition
to 1 GigE and a 10% threshold, with the
variables being both the flow’s upper bandwidth
limit and the flow’s threshold limit to qualify the
flow as a “large flow”. As the flow size
decreases, it would be of interest to evaluate the
effectiveness of “Hedera” as network overhead

	 Page	5	

plays a potentially larger role in relation to the
overall flow size.

Conclusion

In all, I found “Hedera” to be very insightful and
compressive paper related to the subject of
dynamic flow scheduling for data center
networks. “Hedera’s” analysis covers the
spectrum of defining the problem, identifying
potential solutions, and then qualifying the
potential solutions both through simulation as
well as on an actual test bed. Subsequently, I
found that “Hedera” had many strengths and few
weaknesses.

References

[1] Mohammad Al-Fares, et al. Hedera:
Dynamic Flow Scheduling for Data Center
Networks. NSDI'10 Proceedings of the 7th
USENIX conference on Networked systems
design and implementation, 2010.

[2] Zhiruo Cao, Zheng Wang, and Ellen W.
Zegura. Performance of hashing based
schemes for internet load balancing.
INFOCOM, pages 332–341, 2000

[3] Cisco Systems Inc. Cisco Data Center
Infrastructure 2.5 Design Guide. Cisco
Validated Design I. December 6, 2007

[4] NetFPGA Technical Specifications. URL:
http://netfpga.org/1G_specs.html. Last
visited August 17, 2015.

[5] OpenFlow.org, What is OpenFlow? URL:
http://archive.openflow.org/wp/learnmore/.
Last visited August 24, 2015.

[6] Jeffery Dean and Sanjay Ghemawat.
MapReduce: Simplified Data Processing on
Large Clusters. Google, Inc., 2004.

[7] S. Floyd, T. Henderson. The New Reno
Modification to TCP’s Fast Recovery
Algorithm. RFC 2582, 1999.

[8] Kevin Fall and Sally Floyd. Simulation-
based Comparisons of Tahoe, Reno and
SACK TCP. Computer Communication
Review, July 1996.

[9] Stevens, W., Allman, M. and V. Paxson.
TCP Congestion Control. RFC 2581, April
1999.

Glossary of Terms Used

AIMD: Additive-Increase / Multiplicative-
Decrease

ECMP: Equal-Cost Multi-Path

Bijective: Bijective function or one-to-one
correspondence is a function between the
elements of two sets, where every
element of one set is paired with exactly
one element of the other set, and every
element of the other set is paired with
exactly one element of the first set.

MapReduce / HADOOP: MapReduce is a
programming model and an associated
implementation for processing and
generating large data sets [6].

NetFPGA: The NetFPGA is the low-cost
reconfigurable hardware platform
optimized for high-speed networking.
The NetFPGA includes all logic
resources, memory, and Gigabit Ethernet
interfaces necessary to build a complete
switch, router, and/or security device.
Because the entire data path is
implemented in hardware, the system
can support back-to-back packets at full
Gigabit line rates and has a processing
latency measured in only a few clock
cycles [4].

New Reno: A TCP/IP congestion control and
avoidance mechanism. New Reno
improves upon TCP Reno (see “TCP
Reno” below) by adding the ability to
detect multiple packet losses and thus it
is much more efficient in the event of
multiple packet losses. [7]

OpenFlow: OpenFlow is an open standard that
enables researchers to run experimental
protocols in the campus networks.
OpenFlow is added as a feature to
commercial Ethernet switches, routers
and wireless access points – and
provides a standardized hook to allow
researchers to run experiments, without
requiring vendors to expose the internal
workings of their network devices.
OpenFlow is currently being
implemented by major vendors, with
OpenFlow-enabled switches now
commercially available [5].

	 Page	6	

RTT: Round Trip Time

Static Hashing (ECMP): A scheme of hashing
the IP destination modulo the outgoing
links “N” expresses as: H (Destination
IP Address) = Destination IP Address
mod N [2].

TCP Reno: A TCP/IP congestion control and
avoidance mechanism that uses the basic
principle of slow starts and a coarse
grain re-transmit time and adds
additional intelligence so that lost
packets are detected early and that the
pipeline is not emptied every time a
packet is lost [8][9].

