A Comprehensive Review of the Challenges and Opportunities
Confronting Cache Memory System Performance
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300% !

That’s one estimate of how much a processor’s
core bandwidth requirements exceed the ability
of the cache to supply data

[2,3]



Challenges Confronting Cache Memory System
Performance

Some additional astonishing facts...

30 That’s the estimated required increase in cache memory
X bandwidth that is required for every x10 increase in
processor transistor count.

50% That’s the estimated impact that cache memory has on the
overall computer architecture’s power requirements.

# I ... in cost. Cache memory is said to be the most expensive
memory in the overall computer system.

And many of those estimates were predicted over 30 years ago!

[2,3,4,5]
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Today’s Objectives and Contributions

To take you to the forefront of cache memory research
opportunities to improve performance

» Advances in Cache Data Management:
Prefetching, Bandwidth Management, Scheduling,
and Data Placement (Abhishek Ramamurthy)

» Energy Efficiency Opportunities (Mathias
Elmlinger)

PREFETCH UNIT

» Advanced Topics in Cache Memory Research __
(Pranav Timmireddy) e

INSTRUCTION
CACHE

INPUT !
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Advances in Cache Data Management: Prefetching,
Bandwidth Management, and Data Placement

» Why is it necessary to have cache prefetching?

» What is the bottle neck involved in prefetching data
from cache memory!?

» How to improve the cache memory density?
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Sandbox Prefetching Mechanism

» Technique is based on bloom filter (Howard Bloom, 1970).
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Sandbox Prefetch Architecture [14] Sandbox Prefetch Action on L2 Access [14]

» SandBox Prefetching (SBP) improves Address Mapped
Pattern Matching performance by 3.9% in a multicore
environment.
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Increasing Multicore Efficiency through Intelligent

Bandwidth Shifting

» Technique provides better efficiency through assigning
bandwidth for prefetching based on prefetch efficiency.

Reset prefetch
settings
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" | foreach thread

¥ Wait for next
> Improved mUItiCOre efﬁCienCieS g Wait for next

by 7% for random workloads.
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lowest-PU
thread

phase

Base Bandwidth shifting algorithm [16]
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Adaptive Placement Policies for Data in Cache
Memory Systems

» The technique provides a better way placing most frequently
used data in cache and evicting the least used data block in
cache. OR of the frst Wa:2

i_l_'l
Rg Rg Rb Rc Rd Rg Wg R¢ Rg Wg Rf Rb R¢ Rd Re Rm Rn Rs
| ]

[
RR of block 2 4 DR of the second Wa:0

Read range and Depth Range[|7]
2x more storage AND ~60% less area

\ Memory Type | 1M SRAM | 2M SRAM \ 2M STT-RAM | 4M STT-RAM
Area (mm?) 0.825 1.650 0.518 1.035
Read Latency (ns) 1.751 2.017 2.681 2.759
Write Latency (ns) 1.530 1.663 <— 10.954 10.993
Read Energy (nJ/access) 0.055 0.072 0.132 0.142
Write Energy (nJ/access) 0.039 0.056 0.608 0.618
leakage power (mW) 29.798 59.596 > 7.108 14.216

Area and read / write latency of SRAM and STT-RAM [17]
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Energy Efficiency

> Crucial factor: energy efficiency

> Why cache!?

> Large fraction of chip size
> Estimated: 50% of energy dissipation by cache

> Approaches to improve energy efficiency
> Software Self Invalidation (LI) and Data Compression (L2)
> Exploiting row access locality (DRAM)
> Improve Error Correcting Codes and Error Detection Codes (L1)

> Isolation nodes and dynamic memory partitioning techniques (L1/L2)
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Energy Efficiency
Software Self-Invalidation and Data Compression

> |Invalidation
> Through request
> Last-touch load/store instructions

Last-touch
. flag bits Data
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LI cache memory structure [5]
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Energy Efficiency
Software Self-Invalidation and Data Compression

> Invalidation
> Through request

> Last-touch load/store instructions

L., Last-toud
valid flag bits ~ Addresstag, etc. Data

YWirtual ground

| W
| |: Ciated=%dd

(conceptual) LI gated-Vdd control [5] —
GND

> Reduction of up to 10% in terms of leakage energy
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Energy Efficiency

Software Self-Invalidation and Data Compression

> Data compression
> Less memory space used

» More memory space can be turned off

L? Cache Tag L2 Cache Data Block

1 o

1 * ™ =~

-‘-‘-

[>C ‘.ﬁ‘ | Gatad-vdd Tr

L2 gated-Vdd control [5] — — — —

> Reduction of up to 25% in terms of leakage energy
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Energy Efficiency
Exploiting Row Access Locality
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DRAM Sub-Array (left) and DRAM cell (right) [6]

> Timing to access rows based on amount of charge

> Keep track of charge of recently accessed rows
> Table in main memory controller

> Hit: lower timing parameters
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Energy Efficiency
Exploiting Row Access Locality
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Effect of initial cell charge on bit line voltage [6]

> Timing to access rows based on amount of charge

> Keep track of charge of recently accessed rows
> Table in main memory controller

> Hit: lower timing parameters
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Energy Efficiency
Exploiting Row Access Locality
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Single-core Eight-core

DRAM energy reduction of ChargeCache [6]

> Single-core: 1.8% average (max. 6.9%)
> Eight-core: 7.9% average (max. 14.1%)
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Advanced Topics in Cache Memory Research

» STM : Cloning the Spatial and Temporal Memory Access
Behavior

» RADAR (Runtime- Assisted Dead Region) Management for
Last Level Caches
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STM: Spatial and Temporal Cloning

> Transition probability table indexed by
stride history pattern is used to capture Proprietary
. . Workload
the spatial locality

> A combination of stack distance profile STM Framework
and stride pattern table
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(b) Generating clones

STM Framework [19]
Proxy application versus cloning [19]
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STM — Cont’d
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RADAR: Runtime- Assisted Dead Region
Management

> Efficient management of LLCs is essential
> Existing protocols use either dynamic or static techniques.

> RADAR is a hybrid static/dynamic technique which improves LLC
efficiency.

> Look Ahead (LA), Look Back (LB), Conservative combined Scheme (CS =
LA N LB), Aggressive combined Scheme (AS = LA U LB).

ELRU ®LA mLB =CS mAS
’ CS=LANLB ‘ ‘
cholesky gauss jacobi matmul redblack sparselu Average
LLC miss rate for different RADAR [21]

> Aggressive Combined scheme performs best and more than 26%
reduction in LLC misses over the baseline LRU.
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Taking Research into Reality

Such opportunities do translate into results.

An example: two cache bandwidth Quality of Service concepts called CMT (Cache
Monitoring Technology) and CAT (Cache Allocation Technology) took over 10 years

to go from research to silicon.

Shared Cache Shared Cache J

Can | monitor how Can | enforce how

much each much each
workload is using? workload can use?

Overview of CMT (Left) and CAT (Right) [24]

On June 4, 201 3, Intel introduced the Xeon “Haswell” 4th generation processor
employing both CMT and CAT technologies [29].
.. providing as high as a 450% improvement [24].
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Conclusion and Future Work

While cache memory system advances continue to be made...
these advances are consistently offset by the ever increasing
requirements for multicore processors.

One estimate is that by 2020, multicore processors will reach

zetta-flop (10?%') speeds [25]. B R B B

main ﬁnmoqr |

Lyl

Envisioned optical RAM cache architecture [25]

With such demands, the need for additional breakthroughs in
the area of cache memory architectures remains critical.
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Questions?
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